Anterior-to-psoas lumbar interbody fusion (ATP-LIF), more commonly referred to as oblique lateral interbody fusion, and lateral transpsoas lumbar interbody fusion (LTP-LIF), also known as extreme lateral interbody fusion, are the two commonly used lateral approaches for performing a lumbar fusion procedure. These approaches help overcome some of the technical challenges associated with traditional approaches for lumbar fusion. In this systematic review and indirect meta-analysis, the authors compared operative and patient-reported outcomes between these two select approaches using available studies.
Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach, the authors conducted an electronic search using the PubMed, EMBASE, and Scopus databases for studies published before May 1, 2019. Indirect meta-analysis was conducted on fusion rate, cage movement (subsidence plus migration), permanent deficits, and transient deficits; results were depicted as forest plots of proportions (effect size [ES]).
A total of 63 studies were included in this review after applying the exclusion criteria, of which 26 studies investigated the outcomes of ATP-LIF, while 37 studied the outcomes of LTP-LIF. The average fusion rate was found to be similar between the two groups (ES 0.97, 95% CI 0.84–1.00 vs ES 0.94, 95% CI 0.91–0.97; p = 0.561). The mean incidence of cage movement was significantly higher in the ATP-LIF group compared with the LTP-LIF group (stand-alone: ES 0.15, 95% CI 0.06–0.27 vs ES 0.09, 95% CI 0.04–0.16 [p = 0.317]; combined: ES 0.18, 95% CI 0.07–0.32 vs ES 0.02, 95% CI 0.00–0.05 [p = 0.002]). The mean incidence of reoperations was significantly higher in patients undergoing ATP-LIF than in those undergoing LTP-LIF (ES 0.02, 95% CI 0.01–0.03 vs ES 0.04, 95% CI 0.02–0.07; p = 0.012). The mean incidence of permanent deficits was similar between the two groups (stand-alone: ES 0.03, 95% CI 0.01–0.06 vs ES 0.05, 95% CI 0.01–0.12 [p = 0.204]; combined: ES 0.03, 95% CI 0.01–0.06 vs ES 0.03, 95% CI 0.00–0.08 [p = 0.595]). The postoperative changes in visual analog scale (VAS) and Oswestry Disability Index (ODI) scores were both found to be higher for ATP-LIF relative to LTP-LIF (VAS: weighted average 4.11 [SD 2.03] vs weighted average 3.75 [SD 1.94] [p = 0.004]; ODI: weighted average 28.3 [SD 5.33] vs weighted average 24.3 [SD 4.94] [p < 0.001]).
These analyses indicate that while both approaches are associated with similar fusion rates, ATP-LIF may be related to higher odds of cage movement and reoperations as compared with LTP-LIF. Furthermore, there is no difference in rates of permanent deficits between the two procedures.
Images from de Andrada Pereira et al. (pp 525–534).
INCLUDE WHEN CITING Published online April 22, 2022; DOI: 10.3171/2022.2.SPINE211164.
Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
Ohtori S, Orita S, Yamauchi K, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J. 2015;56(4):1051–1059.
Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y. A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord. 2014;15:367.
Salzmann SN, Shue J, Hughes AP. Lateral lumbar interbody fusion-outcomes and complications. Curr Rev Musculoskelet Med. 2017;10(4):539–546.
Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976).1997;22(6):691–700.
Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6(2):89–97.
Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.
Jin J, Ryu KS, Hur JW, Seong JH, Kim JS, Cho HJ. Comparative study of the difference of perioperative complication and radiologic results: MIS-DLIF (minimally invasive direct lateral lumbar interbody fusion) versus MIS-OLIF (minimally invasive oblique lateral lumbar interbody fusion). Clin Spine Surg. 2018;31(1):31–36.
Li J, Wang X, Sun Y, et al. Safety analysis of two anterior lateral lumbar interbody fusions at the initial stage of learning curve. World Neurosurg. 2019;127:e901–e909.
Zhang YH, White I, Potts E, Mobasser JP, Chou D. Comparison perioperative factors during minimally invasive pre-psoas lateral interbody fusion of the lumbar spine using either navigation or conventional fluoroscopy. Global Spine J. 2017;7(7):657–663.
Mehren C, Mayer HM, Zandanell C, Siepe CJ, Korge A. The oblique anterolateral approach to the lumbar spine provides access to the lumbar spine with few early complications. Clin Orthop Relat Res. 2016;474(9):2020–2027.
Abbasi H, Abbasi A. Oblique lateral lumbar interbody fusion (OLLIF): technical notes and early results of a single surgeon comparative study. Cureus. 2015;7(10):e351.
Fujibayashi S, Hynes RA, Otsuki B, Kimura H, Takemoto M, Matsuda S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976).2015;40(3):E175–E182.
Ohtori S, Mannoji C, Orita S, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J. 2015;9(4):565–572.
Abe K, Orita S, Mannoji C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976).2017;42(1):55–62.
Gragnaniello C, Seex K. Anterior to psoas (ATP) fusion of the lumbar spine: evolution of a technique facilitated by changes in equipment. J Spine Surg. 2016;2(4):256–265.
Heo DH, Choi WS, Park CK, Kim JS. minimally invasive oblique lumbar interbody fusion with spinal endoscope assistance: technical note. World Neurosurg. 2016;96:530–536.
Kim JS, Choi WS, Sung JH. 314 Minimally invasive oblique lateral interbody fusion for L4-5: clinical outcomes and perioperative complications. Neurosurgery. 2016;63(CN suppl 1):190–191.
Abbasi H, Miller L, Abbasi A, Orandi V, Khaghany K. Minimally invasive scoliosis surgery with oblique lateral lumbar interbody fusion: single surgeon feasibility study. Cureus. 2017;9(6):e1389.
DiGiorgio AM, Edwards CS, Virk MS, Mummaneni PV, Chou D. Stereotactic navigation for the prepsoas oblique lateral lumbar interbody fusion: technical note and case series. Neurosurg Focus. 2017;43(2):E14.
Heo DH, Kim JS. Clinical and radiological outcomes of spinal endoscopic discectomy-assisted oblique lumbar interbody fusion: preliminary results. Neurosurg Focus. 2017;43(2):E13.
Woods K, Fonseca A, Miller LE. Two-year outcomes from a single surgeon’s learning curve experience of oblique lateral interbody fusion without intraoperative neuromonitoring. Cureus. 2017;9(12):e1980.
Woods KRM, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–553.
Zairi F, Sunna TP, Westwick HJ, et al. Mini-open oblique lumbar interbody fusion (OLIF) approach for multi-level discectomy and fusion involving L5-S1: preliminary experience. Orthop Traumatol Surg Res. 2017;103(2):295–299.
Abbasi H, Grant A. Effect of body mass index on perioperative outcomes in minimally invasive oblique lateral lumbar interbody fusion versus open fusions: a multivariant analysis. Cureus. 2018;10(3):e2288.
Blizzard DJ, Thomas JA. MIS single-position lateral and oblique lateral lumbar interbody fusion and bilateral pedicle screw fixation: feasibility and perioperative results. Spine (Phila Pa 1976).2018;43(6):440–446.
Jin C, Jaiswal MS, Jeun SS, Ryu KS, Hur JW, Kim JS. Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65 years of age. J Orthop Surg Res. 2018;13(1):38.
Lee HJ, Ryu KS, Hur JW, Seong JH, Cho HJ, Kim JS. Safety of lateral interbody fusion surgery without intraoperative monitoring. Turk Neurosurg. 2018;28(3):428–433.
Wang K, Zhang C, Cheng C, Jian F, Wu H. Radiographic and clinical outcomes following combined oblique lumbar interbody fusion and lateral instrumentation for the treatment of degenerative spine deformity: a preliminary retrospective study. Biomed Res Int. 2019;2019:5672162.
Chang SY, Nam Y, Lee J, Chang BS, Lee CK, Kim H. Impact of preoperative diagnosis on clinical outcomes of oblique lateral interbody fusion for lumbar degenerative disease in a single-institution prospective cohort. Orthop Surg. 2019;11(1):66–74.
Abbasi A, Khaghany K, Orandi V, Abbasi H. Clinical and radiological outcomes of oblique lateral lumbar interbody fusion. Cureus. 2019;11(2):e4029.
Zhu G, Hao Y, Yu L, Cai Y, Yang X. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease: a STROBE-compliant study. Medicine (Baltimore). 2018;97(40):e12680.
Zhang C, Wang K, Jian F, Wu H. Efficacy of oblique lateral interbody fusion in treatment of degenerative lumbar disease. World Neurosurg. 2019;124:e17–e24.
Zeng ZY, Xu ZW, He DW, et al. Complications and prevention strategies of oblique lateral interbody fusion technique. Orthop Surg. 2018;10(2):98–106.
Ahmadian A, Bach K, Bolinger B, et al. Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci. 2015;22(4):740–746.
Essig DA, Cho W, Hughes AP, et al. Risk factors for implant subsidence after stand-alone lateral lumbar interbody fusion. Spine J. 2014;14 (11)(suppl):S114.
Bouthors C, Lachaniette CHF, Poignard A, Allain J. Results of LLIF with Avenue L cage in lumbar degenerative disease. Spine J. 2015;15 (3)(suppl):S55.
Heini PF. Reviewer’s comment concerning "the percutaneous stabilization of the sacroiliac joint with hollow modular anchorage screws: a prospective outcome study". (ESJO-D-12-01011R1 by Lyndon W. Mason, Iqroop Chopra and Khitish Mohanty, doi: 10.1007/s00586-013-2825-2). Eur Spine J. 2013;22:2332.
Kim JS, Lee HS, Shin DA, Kim KN, Yoon DH. Correction of coronal imbalance in degenerative lumbar spine disease following direct lateral interbody fusion (DLIF). Korean J Spine. 2012;9(3):176–180.
Malham GM, Ellis NJ, Parker RM, et al. Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF). Clin Spine Surg. 2017;30(2):E90–E98.
Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. ScientificWorldJournal. 2012;2012:456346.
Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–118.
Nemani VM, Aichmair A, Taher F, et al. Rate of revision surgery after stand-alone lateral lumbar interbody fusion for lumbar spinal stenosis. Spine (Phila Pa 1976).2014;39(5):E326–E331.
Oliveira L, Marchi L, Coutinho E, Pimenta L. The subsidence rate in XLIF osteoporotic patients in standalone procedures. Spine J. 2010;10(9)(suppl):S51–S52.
Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976).2010;35(26)(suppl):S331–S337.
Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg. 2013;74(6):343–350.
Tempel ZJ, Gandhoke GS, Bolinger BD, Okonkwo DO, Kanter AS. Vertebral body fracture following stand-alone lateral lumbar interbody fusion (LLIF): report of two events out of 712 levels. Eur Spine J. 2015;24(suppl 3):409–413.
Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.
Drazin D, Kim TT, Johnson JP. Simultaneous lateral interbody fusion and posterior percutaneous instrumentation: early experience and technical considerations. Biomed Res Int. 2015;2015:458284.
Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):34–37.
McAfee PC, Shucosky E, Chotikul L, Salari B, Chen L, Jerrems D. Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases. Int J Spine Surg. 2013;7:e8–e19.
Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):E7.
Waddell B, Briski D, Qadir R, et al. Lateral lumbar interbody fusion for the correction of spondylolisthesis and adult degenerative scoliosis in high-risk patients: early radiographic results and complications. Ochsner J. 2014;14(1):23–31.
Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28(3):E9.
Youssef JA, McAfee PC, Patty CA, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976).2010;35(26)(suppl):S302–S311.
Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. J Spinal Disord Tech. 2008;21(7):459–467.
Alimi M, Lang G, Navarro-Ramirez R, et al. The impact of cage dimensions, positioning, and side of approach in extreme lateral interbody fusion. Clin Spine Surg. 2018;31(1):E42–E49.
Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG. Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res. 2014;472(6):1784–1791.
Zhengkuan X, Qixin C, Gang C, Fangcai L. The technical note and approach related complications of modified lateral lumbar interbody fusion. J Clin Neurosci. 2019;66:182–186.
Timothy J, Pal D, Akhunbay-Fudge C, et al. Extreme lateral interbody fusion (XLIF) as a treatment for acute spondylodiscitis: Leeds spinal unit experience. J Clin Neurosci. 2019;59:213–217.
Scherman DB, Rao PJ, Phan K, Mungovan SF, Faulder K, Dandie G. Outcomes of direct lateral interbody fusion (DLIF) in an Australian cohort. J Spine Surg. 2019;5(1):1–12.
Park HY, Kim YH, Ha KY, et al. Minimally invasive lateral lumbar interbody fusion for clinical adjacent segment pathology: a comparative study with conventional posterior lumbar interbody fusion. Clin Spine Surg. 2019;32(10):E426–E433.
Goh KM, Liow MHL, Xu S, et al. Reduction in foraminal height after lateral access surgery does not affect quality of life: a 2-year outcome study on lateral lumbar interbody fusion. J Orthop Surg (Hong Kong). 2019;27(1):2309499019829336.
Xu DS, Bach K, Uribe JS. Minimally invasive anterior and lateral transpsoas approaches for closed reduction of grade II spondylolisthesis: initial clinical and radiographic experience. Neurosurg Focus. 2018;44(1):E4.
Verla T, Winnegan L, Mayer R, et al. Minimally invasive transforaminal versus direct lateral lumbar interbody fusion: effect on return to work, narcotic use, and quality of life. World Neurosurg. 2018;116:e321–e328.
Louie PK, Varthi AG, Narain AS, et al. Stand-alone lateral lumbar interbody fusion for the treatment of symptomatic adjacent segment degeneration following previous lumbar fusion. Spine J. 2018;18(11):2025–2032.
Kono Y, Gen H, Sakuma Y, Koshika Y. Comparison of clinical and radiologic results of mini-open transforaminal lumbar interbody fusion and extreme lateral interbody fusion indirect decompression for degenerative lumbar spondylolisthesis. Asian Spine J. 2018;12(2):356–364.
Campbell PG, Nunley PD, Cavanaugh D, et al. Short-term outcomes of lateral lumbar interbody fusion without decompression for the treatment of symptomatic degenerative spondylolisthesis at L4–5. Neurosurg Focus. 2018;44(1):E6.
Bocahut N, Audureau E, Poignard A, et al. Incidence and impact of implant subsidence after stand-alone lateral lumbar interbody fusion. Orthop Traumatol Surg Res. 2018;104(3):405–410.
Yang Y, Zhang L, Dong J, et al. Intraoperative myelography in transpsoas lateral lumbar interbody fusion for degenerative lumbar spinal stenosis: a preliminary prospective study. Biomed Res Int. 2017;2017:3742182.
Tessitore E, Molliqaj G, Schaller K, Gautschi OP. Extreme lateral interbody fusion (XLIF): a single-center clinical and radiological follow-up study of 20 patients. J Clin Neurosci. 2017;36:76–79.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–605.
Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.
Sembrano JN, Yson SC, Horazdovsky RD, Santos ERG, Polly DW Jr. Radiographic comparison of lateral lumbar interbody fusion versus traditional fusion approaches: analysis of sagittal contour change. Int J Spine Surg. 2015;9:16.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2436 | 2436 | 161 |
Full Text Views | 352 | 352 | 8 |
PDF Downloads | 362 | 362 | 9 |
EPUB Downloads | 0 | 0 | 0 |