L5–S1 nonunion occurrence even after anterior column support combined with iliac screw fixation in long fusion for adult spinal deformity: CT-based analysis at 2-year follow-up

Se-Jun Park MD, PhD1, Chong-Suh Lee MD, PhD1, Jin-Sung Park MD1, Tae-Hoon Yum MD2, Tae Soo Shin MD1, Ji-Woo Chang MD3, and Keun-Ho Lee MD, PhD3
View More View Less
  • 1 Department of Orthopedic Surgery, Spine Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul;
  • | 2 Department of Orthopedic Surgery, Samsung Bone Hospital, Osan; and
  • | 3 Department of Orthopedic Surgery, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Iliac screw fixation and anterior column support are highly recommended to prevent lumbosacral pseudarthrosis after long-level adult spinal deformity (ASD) surgery. Despite modern instrumentation techniques, a considerable number of patients still experience nonunion at the lumbosacral junction. However, most previous studies evaluating nonunion relied only on plain radiographs and only assessed when the implant failures occurred. Therefore, using CT, it is important to know the prevalence after iliac fixation and to evaluate risk factors for nonunion at L5–S1.

METHODS

Seventy-seven patients who underwent ≥ 4-level fusion to the sacrum using iliac screws for ASD and completed a 2-year postoperative CT scan were included in the present study. All L5–S1 segments were treated by interbody fusion. Lumbosacral fusion status was evaluated on 2-year postoperative CT scans using Brantigan, Steffee, and Fraser criteria. Risk factors for nonunion were analyzed using patient, surgical, and radiographic factors. The metal failure and its association with fusion status at L5–S1 were evaluated.

RESULTS

Of the 77 patients, 12 (15.6%) showed nonunion at the lumbosacral junction on the 2-year CT scans. Multivariate analysis using logistic regression revealed that only higher American Society of Anesthesiologists (ASA) grade was a risk factor for nonunion (OR 25.6, 95% CI 3.196–205.048, p = 0.002). There were no radiographic parameters associated with fusion status at L5–S1. Lumbosacral junction rod fracture occurred more frequently in patients with nonunion than in patients with fusion (33.3% vs 6.2%, p = 0.038).

CONCLUSIONS

Although iliac screw fixation and anterior column support have been performed to prevent lumbosacral nonunion during ASD surgery, 15.6% of patients still showed nonunion on 2-year postoperative CT scans. High ASA grade was a significant risk factor for nonunion. Rod fracture between L5 and S1 occurred more frequently in the nonunion group.

ABBREVIATIONS

ALIF = anterior lumbar interbody fusion; ASA = American Society of Anesthesiologists; ASD = adult spinal deformity; BSF = Brantigan, Steffee, and Fraser; DBM = demineralized bone matrix; DM = diabetes mellitus; LDI = lordosis distribution index; LL = lumbar lordosis; PI = pelvic incidence; PJF = proximal junctional failure; PT = pelvic tilt; SS = sacral slope; SVA = sagittal vertical axis; TK = thoracic kyphosis; TLIF = transforaminal lumbar interbody fusion; UIV = uppermost instrumented vertebra.

Illustration from Dibble et al. (pp 384–394). © Washington University Department of Neurosurgery, published with permission.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Deyo RA, Nachemson A, Mirza SK. Spinal-fusion surgery—the case for restraint. N Engl J Med. 2004;350(7):722726.

  • 2

    Kim HJ, Yang JH, Chang DG, et al. Adult spinal deformity: current concepts and decision-making strategies for management. Asian Spine J. 2020;14(6):886897.

  • 3

    Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am. 1994;76(3):413424.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Fleischer GD, Kim YJ, Ferrara LA, Freeman AL, Boachie-Adjei O. Biomechanical analysis of sacral screw strain and range of motion in long posterior spinal fixation constructs: effects of lumbosacral fixation strategies in reducing sacral screw strains. Spine (Phila Pa 1976). 2012;37(3):E163E169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    McCord DH, Cunningham BW, Shono Y, Myers JJ, McAfee PC. Biomechanical analysis of lumbosacral fixation. Spine (Phila Pa 1976). 1992;17(8)(suppl):S235S243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Chaudhari R, Zheng X, Wu C, Mehbod AA, Transfeldt EE, Winter RB. Effect of number of fusion levels on S1 screws in long fusion construct in a calf spine model. Spine (Phila Pa 1976). 2011;36(8):624629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    O'Shaughnessy BA, Bridwell KH, Lenke LG, et al. Does a long-fusion “T3-sacrum” portend a worse outcome than a short-fusion “T10-sacrum” in primary surgery for adult scoliosis? Spine (Phila Pa 1976). 2012;37(10):884890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Lenz M, Mohamud K, Bredow J, Oikonomidis S, Eysel P, Scheyerer MJ. Comparison of different approaches in lumbosacral spinal fusion surgery: a systematic review and meta-analysis. Asian Spine J. Published online January 5, 2021. doi:10.31616/asj.2020.0405

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Unoki E, Miyakoshi N, Abe E, et al. Sacropelvic fixation with S2 alar iliac screws may prevent sacroiliac joint pain after multisegment spinal fusion. Spine (Phila Pa 1976). 2019;44(17):E1024E1030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Lee CS, Chung SS, Choi SW, Yu JW, Sohn MS. Critical length of fusion requiring additional fixation to prevent nonunion of the lumbosacral junction. Spine (Phila Pa 1976). 2010;35(6):E206E211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Merrill RK, Kim JS, Leven DM, Kim JH, Cho SK. Multi-rod constructs can prevent rod breakage and pseudarthrosis at the lumbosacral junction in adult spinal deformity. Global Spine J. 2017;7(6):514520.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Kim YJ, Bridwell KH, Lenke LG, Cho KJ, Edwards CC II, Rinella AS. Pseudarthrosis in adult spinal deformity following multisegmental instrumentation and arthrodesis. J Bone Joint Surg Am. 2006;88(4):721728.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Kuklo TR, Bridwell KH, Lewis SJ, et al. Minimum 2-year analysis of sacropelvic fixation and L5-S1 fusion using S1 and iliac screws. Spine (Phila Pa 1976). 2001;26(18):19761983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Tsuchiya K, Bridwell KH, Kuklo TR, Lenke LG, Baldus C. Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine (Phila Pa 1976). 2006;31(3):303308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Weistroffer JK, Perra JH, Lonstein JE, et al. Complications in long fusions to the sacrum for adult scoliosis: minimum five-year analysis of fifty patients. Spine (Phila Pa 1976). 2008;33(13):14781483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Finger T, Bayerl S, Onken J, Czabanka M, Woitzik J, Vajkoczy P. Sacropelvic fixation versus fusion to the sacrum for spondylodesis in multilevel degenerative spine disease. Eur Spine J. 2014;23(5):10131020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Iijima Y, Kotani T, Sakuma T, et al. Risk factors for loosening of S2 alar iliac screw: surgical outcomes of adult spinal deformity. Asian Spine J. 2020;14(6):864871.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Harimaya K, Mishiro T, Lenke LG, Bridwell KH, Koester LA, Sides BA. Etiology and revision surgical strategies in failed lumbosacral fixation of adult spinal deformity constructs. Spine (Phila Pa 1976). 2011;36(20):17011710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Fogel GR, Toohey JS, Neidre A, Brantigan JW. Fusion assessment of posterior lumbar interbody fusion using radiolucent cages: X-ray films and helical computed tomography scans compared with surgical exploration of fusion. Spine J. 2008;8(4):570577.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Schwab F, Ungar B, Blondel B, et al. Scoliosis Research Society—Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976). 2012;37(12):10771082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Nakashima H, Kanemura T, Satake K, et al. The prevalence and risk factors for S2 alar-iliac screw loosening with a minimum 2-year follow-up. Asian Spine J. 2020;14(2):177184.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Wang Z, Boubez G, Shedid D, Yuh SJ, Sebaaly A. Is S1 alar iliac screw a feasible option for lumbosacral fixation? A technical note. Asian Spine J. 2018;12(4):749753.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Stambough JL. Lumbosacral instrumented fusion: analysis of 124 consecutive cases. J Spinal Disord. 1999;12(1):19.

  • 24

    Kostuik JP, Hall BB. Spinal fusions to the sacrum in adults with scoliosis. Spine (Phila Pa 1976). 1983;8(5):489500.

  • 25

    Hofler RC, Swong K, Martin B, Wemhoff M, Jones GA. Risk of pseudoarthrosis after spinal fusion: analysis from the Healthcare Cost and Utilization Project. World Neurosurg. 2018;120:e194e202.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Scheer JK, Oh T, Smith JS, et al. Development of a validated computer-based preoperative predictive model for pseudarthrosis with 91% accuracy in 336 adult spinal deformity patients. Neurosurg Focus. 2018;45(5):E11.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Cho W, Mason JR, Smith JS, et al. Failure of lumbopelvic fixation after long construct fusions in patients with adult spinal deformity: clinical and radiographic risk factors: clinical article. J Neurosurg Spine. 2013;19(4):445453.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Pateder DB, Park YS, Kebaish KM, et al. Spinal fusion after revision surgery for pseudarthrosis in adult scoliosis. Spine (Phila Pa 1976). 2006;31(11):E314E319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Guler UO, Cetin E, Yaman O, et al. Sacropelvic fixation in adult spinal deformity (ASD); a very high rate of mechanical failure. Eur Spine J. 2015;24(5):10851091.

  • 30

    Emami A, Deviren V, Berven S, Smith JA, Hu SS, Bradford DS. Outcome and complications of long fusions to the sacrum in adult spine deformity: Luque-Galveston, combined iliac and sacral screws, and sacral fixation. Spine (Phila Pa 1976). 2002;27(7):776786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Yilgor C, Sogunmez N, Yavuz Y, et al. Relative lumbar lordosis and lordosis distribution index: individualized pelvic incidence-based proportional parameters that quantify lumbar lordosis more precisely than the concept of pelvic incidence minus lumbar lordosis. Neurosurg Focus. 2017;43(6):E5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Tobert DG, Davis BJ, Annis P, et al. The impact of the lordosis distribution index on failure after surgical treatment of adult spinal deformity. Spine J. 2020;20(8):12611266.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Bari TJ, Heegaard M, Bech-Azeddine R, Dahl B, Gehrchen M. Lordosis distribution index in short-segment lumbar spine fusion—can ideal lordosis reduce revision surgery and iatrogenic deformity? Neurospine. 2021;18(3):543553.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Wang JY, Liu FS, Li J, Wang XB. Clinical significance of PLIF in restoring L4-S1 segmental lordosis of 2-level isthmic spondylolisthesis. Preprint posted online February 12, 2021. doi:10.21203/rs.3.rs-198135/v1

    • Search Google Scholar
    • Export Citation
  • 35

    Zheng ZM, Yu BS, Chen H, et al. Effect of iliac screw insertion depth on the stability and strength of lumbo-iliac fixation constructs: an anatomical and biomechanical study. Spine (Phila Pa 1976). 2009;34(16):E565E572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    OʼBrien JR, Yu W, Kaufman BE, et al. Biomechanical evaluation of S2 alar-iliac screws: effect of length and quad-cortical purchase as compared with iliac fixation. Spine (Phila Pa 1976). 2013;38(20):E1250E1255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Chen H, Yu BS, Zheng ZM, et al. Biomechanical effect of the iliac screw insertion depth on lumbo-iliac fixation construct. Article in Chinese. Zhonghua Wai Ke Za Zhi. 2008;46(15):11791182.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Daniels AH, DePasse JM, Durand W, et al. Rod fracture after apparently solid radiographic fusion in adult spinal deformity patients. World Neurosurg. 2018;117:e530e537.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Park SJ, Lee CS, Chang BS, et al. Rod fracture and related factors after total en bloc spondylectomy. Spine J. 2019;19(10):16131619.

  • 40

    Annis P, Brodke DS, Spiker WR, Daubs MD, Lawrence BD. The fate of L5-S1 with low-dose BMP-2 and pelvic fixation, with or without interbody fusion, in adult deformity surgery. Spine (Phila Pa 1976). 2015;40(11):E634E639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Stauffer RN, Coventry MB. Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series. J Bone Joint Surg Am. 1972;54(4):756768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol. 2005;26(8):20572066.

  • 43

    Weaver DJ, Malik AT, Jain N, Yu E, Kim J, Khan SN. The Modified 5-Item Frailty Index: a concise and useful tool for assessing the impact of frailty on postoperative morbidity following elective posterior lumbar fusions. World Neurosurg. 2019;124:e626e632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Velanovich V, Antoine H, Swartz A, Peters D, Rubinfeld I. Accumulating deficits model of frailty and postoperative mortality and morbidity: its application to a national database. J Surg Res. 2013;183(1):104110.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 957 957 388
Full Text Views 238 238 119
PDF Downloads 214 214 82
EPUB Downloads 0 0 0