Robot-assisted and augmented reality–assisted spinal instrumentation: a systematic review and meta-analysis of screw accuracy and outcomes over the last decade

View More View Less
  • 1 School of Medicine and Health Sciences, George Washington University, Washington, DC;
  • | 2 Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC;
  • | 3 Center for Bioinformatics and Computational Biology, University of Maryland, Baltimore County, Baltimore, Maryland; and
  • | 4 Georgetown University School of Medicine, Washington, DC
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

The use of technology-enhanced methods in spine surgery has increased immensely over the past decade. Here, the authors present the largest systematic review and meta-analysis to date that specifically addresses patient-centered outcomes, including the risk of inaccurate screw placement and perioperative outcomes in spinal surgeries using robotic instrumentation and/or augmented reality surgical navigation (ARSN).

METHODS

A systematic review of the literature in the PubMed, EMBASE, Web of Science, and Cochrane Library databases spanning the last decade (January 2011–November 2021) was performed to present all clinical studies comparing robot-assisted instrumentation and ARSN with conventional instrumentation techniques in lumbar spine surgery. The authors compared these two technologies as they relate to screw accuracy, estimated blood loss (EBL), intraoperative time, length of stay (LOS), perioperative complications, radiation dose and time, and the rate of reoperation.

RESULTS

A total of 64 studies were analyzed that included 11,113 patients receiving 20,547 screws. Robot-assisted instrumentation was associated with less risk of inaccurate screw placement (p < 0.0001) regardless of control arm approach (freehand, fluoroscopy guided, or navigation guided), fewer reoperations (p < 0.0001), fewer perioperative complications (p < 0.0001), lower EBL (p = 0.0005), decreased LOS (p < 0.0001), and increased intraoperative time (p = 0.0003). ARSN was associated with decreased radiation exposure compared with robotic instrumentation (p = 0.0091) and fluoroscopy-guided (p < 0.0001) techniques.

CONCLUSIONS

Altogether, the pooled data suggest that technology-enhanced thoracolumbar instrumentation is advantageous for both patients and surgeons. As the technology progresses and indications expand, it remains essential to continue investigations of both robotic instrumentation and ARSN to validate meaningful benefit over conventional instrumentation techniques in spine surgery.

ABBREVIATIONS

AR = augmented reality; ARSN = AR surgical navigation; EBL = estimated blood loss; IOT = intraoperative time; LOS = length of stay; RCT = randomized controlled trial; RR = risk ratio.

Supplementary Materials

    • Supplementary Tables and Figures (PDF 2,748 KB)

Images from Zhou et al. (pp 274–282).

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J. 2002;11(6):594598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Kalidindi KKV, Sharma JK, Jagadeesh NH, Sath S, Chhabra HS. Robotic spine surgery: a review of the present status. J Med Eng Technol. 2020;44(7):431437.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15(1):174.

  • 4

    Vadalà G, De Salvatore S, Ambrosio L, Russo F, Papalia R, Denaro V. Robotic spine surgery and augmented reality systems: a state of the art. Neurospine. 2020;17(1):88100.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Parker SL, McGirt MJ, Farber SH, et al. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery. 2011;68(1):170178.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Adogwa O, Parker SL, Shau D, et al. Cost per quality-adjusted life year gained of revision fusion for lumbar pseudoarthrosis: defining the value of surgery. J Spinal Disord Tech. 2015;28(3):101105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Hyun SJ, Kim KJ, Jahng TA, Kim HJ. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine (Phila Pa 1976). 2017;42(6):353358.

    • Search Google Scholar
    • Export Citation
  • 8

    Kim HJ, Lee SH, Chang BS, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976). 2015;40(2):87-94.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT, Yeom JS. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot. 2017;13(3):e1779.

    • Search Google Scholar
    • Export Citation
  • 10

    Kim HJ, Kang KT, Chun HJ, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot. 2018;14(4):e1917.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Kim HJ, Kang KT, Park SC, et al. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial-perspective for patient-specific finite element analysis. Spine J. 2017;17(5):671680.

    • Search Google Scholar
    • Export Citation
  • 12

    Keric N, Eum DJ, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis. J Robot Surg. 2017;11(1):1725.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Park SM, Kim HJ, Lee SY, Chang BS, Lee CK, Yeom JS. Radiographic and clinical outcomes of robot-assisted posterior pedicle screw fixation: two-year results from a randomized controlled trial. Yonsei Med J. 2018;59(3):438444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Faissal Z, Brian M, Jill S. Comparative retrospective analysis of accuracy of robotic-guided fluoroscopy-guided percutaneous pedicle screw placement in adults with degenerative spine disease. Open Orthop J. 2018;12(1):576582.

    • Search Google Scholar
    • Export Citation
  • 15

    Fan Y, Peng Du J, Liu JJ, Zhang JN, Liu SC, Hao DJ. Radiological and clinical differences among three assisted technologies in pedicle screw fixation of adult degenerative scoliosis. Sci Rep. 2018;8(1):890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Shillingford JN, Laratta JL, Park PJ, et al. Human versus robot: a propensity-matched analysis of the accuracy of free hand versus robotic guidance for placement of S2 alar-iliac (S2AI) screws. Spine (Phila Pa 1976). 2018;43(21):E1297-E1304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Archavlis E, Amr N, Kantelhardt SR, Giese A. Rates of upper facet joint violation in minimally invasive percutaneous and open instrumentation: a comparative cohort study of different insertion techniques. J Neurol Surg A Cent Eur Neurosurg. 2018;79(1):18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Yang JS, He B, Tian F, et al. Accuracy of robot-assisted percutaneous pedicle screw placement for treatment of lumbar spondylolisthesis: a comparative cohort study. Med Sci Monit. 2019;25:24792487.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Jamshidi AM, Massel DH, Liounakos JI, et al. Fluoroscopy time analysis of a prospective, multi-centre study comparing robotic- and fluoroscopic-guided placement of percutaneous pedicle screw instrumentation for short segment minimally invasive lumbar fusion surgery. Int J Med Robot. 2021;17(2):e2188.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Zhang JN, Fan Y, He X, Liu TJ, Hao DJ. Comparison of robot-assisted and freehand pedicle screw placement for lumbar revision surgery. Int Orthop. 2021;45(6):15311538.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Wang C, Zhang H, Zhang L, et al. Accuracy and deviation analysis of robot-assisted spinal implants: a retrospective overview of 105 cases and preliminary comparison to open freehand surgery in lumbar spondylolisthesis. Int J Med Robot. 2021;17(4):e2273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Liounakos JI, Kumar V, Jamshidi A, et al. Reduction in complication and revision rates for robotic-guided short-segment lumbar fusion surgery: results of a prospective, multi-center study. J Robot Surg. 2021;15(5):793802.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Zhang Q, Xu YF, Tian W, et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement. Orthop Surg. 2019;11(5):850856.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Zhang Q, Han XG, Xu YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease. World Neurosurg. 2019;125:e429e434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Tian W, Fan M, Liu Y. Pedicle screw insertion in spine: a randomized controlled study for robot-assisted spinal surgery. EpiC Ser Health Sci. 2017;1:2327.

    • Search Google Scholar
    • Export Citation
  • 26

    Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. 2019;30(5):615622.

    • Search Google Scholar
    • Export Citation
  • 27

    Feng S, Tian W, Wei Y. Clinical effects of oblique lateral interbody fusion by conventional open versus percutaneous robot-assisted minimally invasive pedicle screw placement in elderly patients. Orthop Surg. 2020;12(1):8693.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Feng S, Tian W, Sun Y, Liu Y, Wei Y. Effect of robot-assisted surgery on lumbar pedicle screw internal fixation in patients with osteoporosis. World Neurosurg. 2019;125:e1057e1062.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Le X, Tian W, Shi Z, et al. Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison. World Neurosurg. 2018;120:e745e751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Chen X, Feng F, Yu X, et al. Robot-assisted orthopedic surgery in the treatment of adult degenerative scoliosis: a preliminary clinical report. J Orthop Surg Res. 2020;15(1):282.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Du J, Gao L, Huang D, et al. Radiological and clinical differences between tinavi orthopedic robot and o-arm navigation system in thoracolumbar screw implantation for reconstruction of spinal stability. Med Sci Monit. 2020;26:e924770.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Le XF, Shi Z, Wang QL, Xu YF, Zhao JW, Tian W. Rate and risk factors of superior facet joint violation during cortical bone trajectory screw placement: a comparison of robot-assisted approach with a conventional technique. Orthop Surg. 2020;12(1):133140.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Chen X, Song Q, Wang K, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a retrospective matched-control analysis for clinical and quality-of-life outcomes. J Comp Eff Res. 2021;10(10):845856.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Schizas C, Thein E, Kwiatkowski B, Kulik G. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg. 2012;78(2):240245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72(suppl 1):1218.

  • 36

    Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496-E501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine (Phila Pa 1976). 2014;20(6):636-643.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Fan Y, Du J, Zhang J, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:59605968.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus. 2017;42(5):E14.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Solomiichuk V, Fleischhammer J, Molliqaj G, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus. 2017;42(5):E13.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Alaid A, von Eckardstein K, Smoll NR, et al. Robot guidance for percutaneous minimally invasive placement of pedicle screws for pyogenic spondylodiscitis is associated with lower rates of wound breakdown compared to conventional fluoroscopy-guided instrumentation. Neurosurg Rev. 2018;41(2):489496.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-arm, robotic guidance, or freehand technique: a comparative study. Spine (Phila Pa 1976). 2018;43(6):E373-E378.

    • Search Google Scholar
    • Export Citation
  • 43

    Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860868.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25(3):947955.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Khan A, Rho K, Mao JZ, et al. Comparing cortical bone trajectories for pedicle screw insertion using robotic guidance and three-dimensional computed tomography navigation. World Neurosurg. 2020;141:e625e632.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Khan A, Meyers JE, Yavorek S, et al. Comparing next-generation robotic technology with 3-dimensional computed tomography navigation technology for the insertion of posterior pedicle screws. World Neurosurg. 2019;123:e474e481.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Ver MLP, Gum JL, Crawford CH, et al. Index episode-of-care propensity-matched comparison of transforaminal lumbar interbody fusion (TLIF) techniques: open traditional TLIF versus midline lumbar interbody fusion (MIDLIF) versus robot-assisted MIDLIF. J Neurosurg Spine. 2020;32(5):741747.

    • Search Google Scholar
    • Export Citation
  • 48

    Mao G, Gigliotti MJ, Myers D, Yu A, Whiting D. Single-surgeon direct comparison of o-arm neuronavigation versus mazor x robotic-guided posterior spinal instrumentation. World Neurosurg. 2020;137:e278e285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Katsevman GA, Spencer RD, Daffner SD, et al. Robotic-navigated percutaneous pedicle screw placement has less facet joint violation than fluoroscopy-guided percutaneous screws. World Neurosurg. 2021;151:e731e737.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Li Z, Chen J, Zhu QA, et al. A preliminary study of a novel robotic system for pedicle screw fixation: a randomised controlled trial. J Orthop Translat. 2019;20:7379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Fayed I, Tai A, Triano M, et al. Robot-assisted percutaneous pedicle screw placement: evaluation of accuracy of the first 100 screws and comparison with cohort of fluoroscopy-guided screws. World Neurosurg. 2020;143:e492e502.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Jiang B, Pennington Z, Azad T, et al. Robot-assisted versus freehand instrumentation in short-segment lumbar fusion: experience with real-time image-guided spinal robot. World Neurosurg. 2020;136:e635e645.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Lieber AM, Kirchner GJ, Kerbel YE, Khalsa AS. Robotic-assisted pedicle screw placement fails to reduce overall postoperative complications in fusion surgery. Spine J. 2019;19(2):212217.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Yang DS, Li NY, Kleinhenz DT, Patel S, Daniels AH. Risk of postoperative complications and revision surgery following robot-assisted posterior lumbar spinal fusion. Spine (Phila Pa 1976). 2020;45(24):E1692-E1698.

    • Search Google Scholar
    • Export Citation
  • 55

    Gu Y, Yao Q, Xu Y, Zhang H, Wei P, Wang L. A clinical application study of mixed reality technology assisted lumbar pedicle screws implantation. Med Sci Monit. 2020;26:e924982.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Matsukawa K, Yato Y. Smart glasses display device for fluoroscopically guided minimally invasive spinal instrumentation surgery: a preliminary study. J Neurosurg Spine. 2021;34(1):150155.

    • Search Google Scholar
    • Export Citation
  • 57

    Yoon JW, Chen RE, Han PK, Si P, Freeman WD, Pirris SM. Technical feasibility and safety of an intraoperative head-up display device during spine instrumentation. Int J Med Robot. 2017;13(3):e1770.

    • Search Google Scholar
    • Export Citation
  • 58

    Carl B, Bopp M, Saß B, Pojskic M, Voellger B, Nimsky C. Spine surgery supported by augmented reality. Global Spine J. 2020;10(2)(suppl):41S55S.

  • 59

    Carl B, Bopp M, Saß B, Pojskic M, Nimsky C. Augmented reality in intradural spinal tumor surgery. Acta Neurochir (Wien). 2019;161(10):21812193.

    • Search Google Scholar
    • Export Citation
  • 60

    Carl B, Bopp M, Saß B, Voellger B, Nimsky C. Implementation of augmented reality support in spine surgery. Eur Spine J. 2019;28(7):16971711.

  • 61

    Carl B, Bopp M, Saß B, Nimsky C. Microscope-based augmented reality in degenerative spine surgery: initial experience. World Neurosurg. 2019;128:e541e551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Elmi-Terander A, Burström G, Nachabé R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10(1):707.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Edström E, Burström G, Omar A, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976). 2020;45(1):E45-E53.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Elmi-Terander A, Burström G, Nachabe R, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine (Phila Pa 1976). 2019;44(7):517-525.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    Edström E, Burström G, Nachabe R, Gerdhem P, Elmi Terander A. A novel augmented-reality-based surgical navigation system for spine surgery in a hybrid operating room: design, workflow, and clinical applications. Oper Neurosurg (Hagerstown). 2020;18(5):496502.

    • Search Google Scholar
    • Export Citation
  • 66

    Edström E, Burström G, Persson O, et al. Does augmented reality navigation increase pedicle screw density compared to free-hand technique in deformity surgery?. Single surgeon case series of 44 patients. Spine (Phila Pa 1976). 2020;45(17):E1085-E1090.

    • Search Google Scholar
    • Export Citation
  • 67

    Burström G, Nachabe R, Homan R, et al. Frameless patient tracking with adhesive optical skin markers for augmented reality surgical navigation in spine surgery. Spine (Phila Pa 1976). 2020;45(22):1598-1604.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68

    Charles YP, Cazzato RL, Nachabe R, Chatterjea A, Steib JP, Gangi A. Minimally invasive transforaminal lumbar interbody fusion using augmented reality surgical navigation for percutaneous pedicle screw placement. Clin Spine Surg. 2021;34(7):E415E424.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    Liu A, Jin Y, Cottrill E, et al. Clinical accuracy and initial experience with augmented reality-assisted pedicle screw placement: the first 205 screws. J Neurosurg Spine. Published online October 8, 2021. doi: 10.3171/2021.2.SPINE202097

    • Search Google Scholar
    • Export Citation
  • 70

    Yahanda AT, Moore E, Ray WZ, Pennicooke B, Jennings JW, Molina CA. First in-human report of the clinical accuracy of thoracolumbar percutaneous pedicle screw placement using augmented reality guidance. Neurosurg Focus. 2021;51(2):E10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    McKenzie DM, Westrup AM, O’Neal CM, et al. Robotics in spine surgery: a systematic review. J Clin Neurosci. 2021;89:17.

  • 72

    Peng YN, Tsai LC, Hsu HC, Kao CH. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med. 2020;8(13):824.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    Fatima N, Massaad E, Hadzipasic M, Shankar GM, Shin JH. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J. 2021;21(2):181192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74

    Zhou LP, Zhang RJ, Sun YW, Zhang L, Shen CL. Accuracy of pedicle screw placement and four other clinical outcomes of robotic guidance technique versus computer-assisted navigation in thoracolumbar surgery: a meta-analysis. World Neurosurg. 2021;146:e139e150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75

    Tarawneh AM, Salem KM. A Systematic review and meta-analysis of randomized controlled trials comparing the accuracy and clinical outcome of pedicle screw placement using robot-assisted technology and conventional freehand technique. Global Spine J. 2021;11(4):575586.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76

    Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine (Phila Pa 1976). 2020;45(2):E111-E119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77

    Perdomo-Pantoja A, Ishida W, Zygourakis C, et al. Accuracy of current techniques for placement of pedicle screws in the spine: a comprehensive systematic review and meta-analysis of 51,161 screws. World Neurosurg. 2019;126:664678.e3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78

    Fu W, Tong J, Liu G, et al. Robot-assisted technique vs conventional freehand technique in spine surgery: a meta-analysis. Int J Clin Pract. 2021;75(5):e13964.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    De Vega B, Navarro AR, Gibson A, Kalaskar DM. Accuracy of pedicle screw placement methods in pediatrics and adolescents spinal surgery: a systematic review and meta-analysis. Glob Spine J. Published online March 18, 2021. doi: 10.1177/21925682211003552

    • Search Google Scholar
    • Export Citation
  • 80

    Li W, Li G, Chen W, Cong L. The safety and accuracy of robot-assisted pedicle screw internal fixation for spine disease: a meta-analysis. Bone Joint Res. 2020;9(10):653666.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 11048 11048 156
Full Text Views 477 477 54
PDF Downloads 337 337 61
EPUB Downloads 0 0 0