Biomechanical study of rod stress in lumbopelvic fixation with lateral interbody fusion: an in vitro experimental study using synthetic bone models

View More View Less
  • 1 Department of Orthopaedic Surgery, Wakayama Medical University; and
  • | 2 Department of Biomedical Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Despite improvements in surgical techniques and instruments, high rates of rod fracture following a long spinal fusion in the treatment of adult spinal deformity (ASD) remain a concern. Thus, an improved understanding of rod fracture may be valuable for better surgical planning. The authors aimed to investigate mechanical stress on posterior rods in lumbopelvic fixation for the treatment of ASD.

METHODS

Synthetic lumbopelvic bone models were instrumented with intervertebral cages, pedicle screws, S2-alar-iliac screws, and rods. The construct was then placed in a testing device, and compressive loads were applied. Subsequently, the strain on the rods was measured using strain gauges on the dorsal aspect of each rod.

RESULTS

When the models were instrumented using titanium alloy rods at 30° lumbar lordosis and with lateral interbody fusion cages, posterior rod strain was highest at the lowest segment (L5–S1) and significantly higher than that at the upper segment (L2–3) (p = 0.002). Changing the rod contour from 30° to 50° caused a 36% increase in strain at L5–S1 (p = 0.009). Changing the rod material from titanium alloy to cobalt-chromium caused a 140% increase in strain at L2–3 (p = 0.009) and a 28% decrease in strain at L5–S1 (p = 0.016). The rod strain at L5–S1 using a flat bender for contouring was 23% less than that obtained using a French bender (p = 0.016).

CONCLUSIONS

In lumbopelvic fixation in which currently available surgical techniques for ASD are used, the posterior rod strain was highest at the lumbosacral junction, and depended on the contour and material of the rods.

ABBREVIATIONS

ASD = adult spinal deformity; CoCr = cobalt-chromium; LIF = lateral interbody fusion; PLIF = posterior lumbar interbody fusion; PSO = pedicle subtraction osteotomy; RF = rod fracture; Ti = titanium alloy.

Illustration from Kong et al. (pp 4–12). Copyright Qing-Jie Kong. Used with permission.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Schwab FJ, Hawkinson N, Lafage V, et al. Risk factors for major peri-operative complications in adult spinal deformity surgery: a multi-center review of 953 consecutive patients. Eur Spine J. 2012;21(12):26032610.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Smith JS, Klineberg E, Lafage V, et al. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine. 2016;25(1):114.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Soroceanu A, Diebo BG, Burton D, et al. Radiographical and implant-related complications in adult spinal deformity surgery: incidence, patient risk factors, and impact on health-related quality of life. Spine (Phila Pa 1976).2015;40(18):14141421.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Lertudomphonwanit T, Kelly MP, Bridwell KH, et al. Rod fracture in adult spinal deformity surgery fused to the sacrum: prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J. 2018;18(9):16121624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012;71(4):862867.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Smith JS, Shaffrey E, Klineberg E, et al. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine. 2014;21(6):9941003.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Barton C, Noshchenko A, Patel V, Cain C, Kleck C, Burger E. Risk factors for rod fracture after posterior correction of adult spinal deformity with osteotomy: a retrospective case-series. Scoliosis. 2015;10:30.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Tang JA, Leasure JM, Smith JS, Buckley JM, Kondrashov D, Ames CP. Effect of severity of rod contour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study. Neurosurgery. 2013;72(2):276283.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    La Barbera L, Brayda-Bruno M, Liebsch C, et al. Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy. Eur Spine J. 2018;27(9):23572366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Berjano P, Xu M, Damilano M, et al. Supplementary delta-rod configurations provide superior stiffness and reduced rod stress compared to traditional multiple-rod configurations after pedicle subtraction osteotomy: a finite element study. Eur Spine J. 2019;28(9):21982207.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Lee KY, Lee JH, Kang KC, et al. Minimally invasive multilevel lateral lumbar interbody fusion with posterior column osteotomy compared with pedicle subtraction osteotomy for adult spinal deformity. Spine J. 2020;20(6):925933.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Lee KY, Lee JH, Kang KC, Im SK, Lim HS, Choi SW. Strategies for prevention of rod fracture in adult spinal deformity: cobalt chrome rod, accessory rod technique, and lateral lumbar interbody fusion. J Neurosurg Spine. 2021;34(5):706715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Seng WRD, Chou SM, Siddiqui SS, Oh JYL. Pedicle screw designs in spinal surgery: is there a difference? A biomechanical study on primary and revision pull-out strength. Spine (Phila Pa 1976).2019;44(3):E144E149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Pfeiffer FM, Abernathie DL, Smith DE. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine (Phila Pa 1976).2006;31(23):E867E870.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Mehmanparast HN, Mac-Thiong JM, Petit Y. Compressive properties of a synthetic bone substitute for vertebral cancellous bone. Int J Biomed Biol Eng. 2012;6(5):144147.

    • Search Google Scholar
    • Export Citation
  • 17

    Nagaraja S, Palepu V. Comparisons of anterior plate screw pullout strength between polyurethane foams and thoracolumbar cadaveric vertebrae. J Biomech Eng. 2016;138(10):104505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Choma TJ, Chwirut D, Polly DW Jr. Biomechanics of long segment fixation: hook patterns and rod strain. J Spinal Disord. 2001;14(2):125132.

  • 19

    Orchowski J, Polly DW Jr, Klemme WR, Oda I, Cunningham B. The effect of kyphosis on the mechanical strength of a long-segment posterior construct using a synthetic model. Spine (Phila Pa 1976). 2000;25(13):16441648.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Belmont PJ Jr, Polly DW Jr, Cunningham BW, Klemme WR. The effects of hook pattern and kyphotic angulation on mechanical strength and apical rod strain in a long-segment posterior construct using a synthetic model. Spine (Phila Pa 1976). 2001;26(6):627635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976).2005;30(6):682688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976).2005;30(18):20242029.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Schwab F, Lafage V, Patel A, Farcy JP. Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976).2009;34(17):18281833.

  • 24

    Inami S, Moridaira H, Takeuchi D, Shiba Y, Nohara Y, Taneichi H. Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence. Eur Spine J. 2016;25(11):36383643.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Yamato Y, Hasegawa T, Kobayashi S, et al. Calculation of the target lumbar lordosis angle for restoring an optimal pelvic tilt in elderly patients with adult spinal deformity. Spine (Phila Pa 1976).2016;41(4):E211E217.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Hasegawa K, Okamoto M, Hatsushikano S, Shimoda H, Ono M, Watanabe K. Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J. 2016;25(11):36753686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Lippman CR, Spence CA, Youssef AS, Cahill DW. Correction of adult scoliosis via a posterior-only approach. Neurosurg Focus. 2003;14(1):e5.

  • 28

    Bridwell KH, Lewis SJ, Lenke LG, Baldus C, Blanke K. Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Joint Surg Am. 2003;85(3):454463.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Pateder DB, Kebaish KM, Cascio BM, Neubaeur P, Matusz DM, Kostuik JP. Posterior only versus combined anterior and posterior approaches to lumbar scoliosis in adults: a radiographic analysis. Spine (Phila Pa 1976).2007;32(14):15511554.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Wang MY. PLIF for the treatment of adult spinal deformity. Acta Neurochir (Wien). 2011;153(3):557.

  • 31

    Dorward IG, Lenke LG, Bridwell KH, et al. Transforaminal versus anterior lumbar interbody fusion in long deformity constructs: a matched cohort analysis. Spine (Phila Pa 1976).2013;38(12):E755E762.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Zanirato A, Damilano M, Formica M, et al. Complications in adult spine deformity surgery: a systematic review of the recent literature with reporting of aggregated incidences. Eur Spine J. 2018;27(9):22722284.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    de Kunder SL, van Kuijk SMJ, Rijkers K, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017;17(11):17121721.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435443.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Im SK, Lee KY, Lim HS, Suh DU, Lee JH. Optimized surgical strategy for adult spinal deformity: quantitative lordosis correction versus lordosis morphology. J Clin Med. 2021;10(9):1867.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J. 2010;19(11):18241836.

  • 37

    Yilgor C, Sogunmez N, Yavuz Y, et al. Relative lumbar lordosis and lordosis distribution index: individualized pelvic incidence-based proportional parameters that quantify lumbar lordosis more precisely than the concept of pelvic incidence minus lumbar lordosis. Neurosurg Focus. 2017;43(6):E5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Yilgor C, Sogunmez N, Boissiere L, et al. Global alignment and proportion (GAP) score development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am. 2017;99(19):16611672.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Roussouly P, Pinheiro-Franco JL. Sagittal parameters of the spine: biomechanical approach. Eur Spine J. 2011;20(suppl 5):578585.

  • 40

    Liang Z, Cui J, Zhang J, et al. Biomechanical evaluation of strategies for adjacent segment disease after lateral lumbar interbody fusion: is the extension of pedicle screws necessary?. BMC Musculoskelet Disord. 2020;21(1):117.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Lee JH, Kim KT, Lee SH, et al. Overcorrection of lumbar lordosis for adult spinal deformity with sagittal imbalance: comparison of radiographic outcomes between overcorrection and undercorrection. Eur Spine J. 2016;25(8):26682675.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Hallager DW, Gehrchen M, Dahl B, et al. Use of supplemental short pre-contoured accessory rods and cobalt chrome alloy posterior rods reduces primary rod strain and range of motion across the pedicle subtraction osteotomy level: an in vitro biomechanical study. Spine (Phila Pa 1976).2016;41(7):E388E395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Dick JC, Bourgeault CA. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine (Phila Pa 1976).2001;26(15):16681672.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Cornaz F, Widmer J, Snedeker JG, Spirig JM, Farshad M. Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies. Eur Spine J. 2021;30(1):3449.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1170 1170 217
Full Text Views 199 199 54
PDF Downloads 212 212 55
EPUB Downloads 0 0 0