Postoperative progression of ligamentum flavum ossification after posterior instrumented surgery for thoracic posterior longitudinal ligament ossification: long-term outcomes during a minimum 10-year follow-up

View More View Less
  • 1 Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

The authors sought to investigate clinical and radiological outcomes after thoracic posterior fusion surgery during a minimum of 10 years of follow-up, including postoperative progression of ossification, in patients with thoracic ossification of the posterior longitudinal ligament (T-OPLL).

METHODS

The study participants were 34 consecutive patients (15 men, 19 women) with an average age at surgery of 53.6 years (range 36–80 years) who underwent posterior decompression and fusion surgery with instrumentation at the authors’ hospital. The minimum follow-up period was 10 years. Estimated blood loss, operative time, pre- and postoperative Japanese Orthopaedic Association (JOA) scores, and JOA score recovery rates were investigated. Dekyphotic changes were evaluated on plain radiographs of thoracic kyphotic angles and fusion levels pre- and postoperatively and 10 years after surgery. The distal junctional angle (DJA) was measured preoperatively and at 10 years after surgery to evaluate distal junctional kyphosis (DJK). Ossification progression at distal intervertebrae was investigated on CT.

RESULTS

The Cobb angles at T1–12 were 46.8°, 38.7°, and 42.6°, and those at the fusion level were 39.6°, 31.1°, and 34.1° pre- and postoperatively and at 10 years after surgery, respectively. The changes in the kyphotic angles from pre- to postoperatively and to 10 years after surgery were 8.0° and 7.2° at T1–12 and 8.4° and 7.9° at the fusion level, respectively. The DJA changed from 4.5° postoperatively to 10.9° at 10 years after surgery. There were 11 patients (32.3%) with DJK during follow-up, including 4 (11.8%) with vertebral compression fractures at lower instrumented vertebrae or adjacent vertebrae. Progression of ossification of the ligamentum flavum (OLF) on the caudal side occurred in 8 cases (23.6%), but none had ossification of the posterior longitudinal ligament (OPLL) progression. Cases with OLF progression had a significantly lower rate of DJK (0% vs 38.5%, p < 0.01), a lower DJA (3.4° vs 13.2°, p < 0.01), and a smaller change in DJA at 10 years after surgery (0.8° vs 8.1°, p < 0.01).

CONCLUSIONS

Posterior decompression and fusion surgery with instrumentation for T-OPLL was found to be a relatively safe and stable surgical procedure based on the long-term outcomes. Progression of OLF on the caudal side occurred in 23.6% of cases, but cases with OLF progression did not have DJK. Progression of DJK shifts the load in the spinal canal forward and the load on the ligamentum flavum is decreased. This may explain the lack of ossification in cases with DJK.

ABBREVIATIONS

DJA = distal junctional angle; DJK = distal junctional kyphosis; DM = diabetes mellitus; EBL = estimated blood loss; HT = hypertension; JOA = Japanese Orthopaedic Association; LIV = lower instrumented vertebrae; OLF = ossification of the ligamentum flavum; OPLL = ossification of the posterior longitudinal ligament; T-OPLL = thoracic OPLL; UIV = upper instrumented vertebrae; VCF = vertebral compression fracture.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Nakamura H, Kimura T. Minimum 10-year followup after en bloc cervical laminoplasty. Clin Orthop Relat Res. 2003;(411):129139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Iwasaki M, Kawaguchi Y, Kimura T, Yonenobu K. Long-term results of expansive laminoplasty for ossification of the posterior longitudinal ligament of the cervical spine: more than 10 years follow up. J Neurosurg. 2002;96(2)(suppl):180189.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Yamazaki M, Koda M, Okawa A, Aiba A. Transient paraparesis after laminectomy for thoracic ossification of the posterior longitudinal ligament and ossification of the ligamentum flavum. Spinal Cord. 2006;44(2):130134.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Yamazaki M, Okawa A, Koda M, Goto S, Minami S, Moriya H. Transient paraparesis after laminectomy for thoracic myelopathy due to ossification of the posterior longitudinal ligament: a case report. Spine (Phila Pa 1976).2005;30(12):E343E346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Matsumoto M, Chiba K, Toyama Y, Takeshita K, Seichi A, Nakamura K, et al. Surgical results and related factors for ossification of posterior longitudinal ligament of the thoracic spine: a multi-institutional retrospective study. Spine (Phila Pa 1976).2008;33(9):10341041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Matsuyama Y, Sakai Y, Katayama Y, Imagama S, Ito Z, Wakao N, et al. Indirect posterior decompression with corrective fusion for ossification of the posterior longitudinal ligament of the thoracic spine: is it possible to predict the surgical results? Eur Spine J. 2009;18(7):943948.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Yamazaki M, Mochizuki M, Ikeda Y, Sodeyama T, Okawa A, Koda M, Moriya H. Clinical results of surgery for thoracic myelopathy caused by ossification of the posterior longitudinal ligament: operative indication of posterior decompression with instrumented fusion. Spine (Phila Pa 1976).2006;31(13):14521460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Yamazaki M, Okawa A, Fujiyoshi T, Furuya T, Koda M. Posterior decompression with instrumented fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament. Eur Spine J. 2010;19(5):691698.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Nakashima H, Tetreault L, Kato S, Kryshtalskyj MT, Nagoshi N, Nouri A, et al. Prediction of outcome following surgical treatment of cervical myelopathy based on features of ossification of the posterior longitudinal ligament: a systematic review. JBJS Rev. 2017;5(2):e5.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Chen Y, Guo Y, Lu X, Chen D, Song D, Shi J, Yuan W. Surgical strategy for multilevel severe ossification of posterior longitudinal ligament in the cervical spine. J Spinal Disord Tech. 2011;24(1):2430.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Liu X, Min S, Zhang H, Zhou Z, Wang H, Jin A. Anterior corpectomy versus posterior laminoplasty for multilevel cervical myelopathy: a systematic review and meta-analysis. Eur Spine J. 2014;23(2):362372.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Sakai K, Okawa A, Takahashi M, Arai Y, Kawabata S, Enomoto M, et al. Five-year follow-up evaluation of surgical treatment for cervical myelopathy caused by ossification of the posterior longitudinal ligament: a prospective comparative study of anterior decompression and fusion with floating method versus laminoplasty. Spine (Phila Pa 1976).2012;37(5):367376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Nakajima H, Watanabe S, Honjoh K, Kitade I, Sugita D, Matsumine A. Long-term outcome of anterior cervical decompression with fusion for cervical ossification of posterior longitudinal ligament including postsurgical remnant ossified spinal lesion. Spine (Phila Pa 1976).2019;44(24):E1452E1460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Imagama S, Ando K, Ito Z, Kobayashi K, Hida T, Ito K, et al. Risk factors for ineffectiveness of posterior decompression and dekyphotic corrective fusion with instrumentation for beak-type thoracic ossification of the posterior longitudinal ligament: a single institute study. Neurosurgery. 2017;80(5):800808.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Imagama S, Ando K, Kobayashi K, Hida T, Ito K, Tsushima M, et al. Factors for a good surgical outcome in posterior decompression and dekyphotic corrective fusion with instrumentation for thoracic ossification of the posterior longitudinal ligament: prospective single-center study. Oper Neurosurg (Hagerstown). 2017;13(6):661669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Imagama S, Ando K, Takeuchi K, Kato S, Murakami H, Aizawa T, et al. Perioperative complications after surgery for thoracic ossification of posterior longitudinal ligament: a nationwide multicenter prospective study. Spine (Phila Pa 1976).2018;43(23):E1389E1397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Hirabayashi K, Miyakawa J, Satomi K, Maruyama T, Wakano K. Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine (Phila Pa 1976).1981;6(4):354364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Yonenobu K, Abumi K, Nagata K, Taketomi E, Ueyama K. Interobserver and intraobserver reliability of the japanese orthopaedic association scoring system for evaluation of cervical compression myelopathy. Spine (Phila Pa 1976).2001;26(17):18901895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Matsuyama Y, Yoshihara H, Tsuji T, Sakai Y, Yukawa Y, Nakamura H, et al. Surgical outcome of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine: implication of the type of ossification and surgical options. J Spinal Disord Tech. 2005;18(6):492498.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Ando K, Kobayashi K, Machino M, Ota K, Tanaka S, Morozumi M, et al. Connection of discontinuous segments in early functional recovery from thoracic ossification of the posterior longitudinal ligament treated with posterior instrumented surgery. J Neurosurg Spine. 2019;32(2):200206.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Ando K, Imagama S, Kobayashi K, Hida T, Ito K, Tsushima M, et al. Comparative study of surgical treatment and nonsurgical follow up for thoracic ossification of the posterior longitudinal ligament: radiological and clinical evaluation. Spine (Phila Pa 1976).2017;42(6):407410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Imagama S, Ito Z, Ando K. Tips for good surgical results of indirect posterior decompression with corrective fusion for ossification of the posterior longitudinal ligament of the thoracic spine. Article in Japanese. Rinsho Seikeigeka. 2012;47(9):829835.

    • Search Google Scholar
    • Export Citation
  • 23

    Koda M, Furuya T, Okawa A, Inada T, Kamiya K, Ota M, et al. Mid- to long-term outcomes of posterior decompression with instrumented fusion for thoracic ossification of the posterior longitudinal ligament. J Clin Neurosci. 2016;27:8790.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Guo JJ, Luk KD, Karppinen J, Yang H, Cheung KM. Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. Spine (Phila Pa 1976).2010;35(1):5156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Kudo S, Ono M, Russell WJ. Ossification of thoracic ligamenta flava. AJR Am J Roentgenol. 1983;141(1):117121.

  • 26

    He S, Hussain N, Li S, Hou T. Clinical and prognostic analysis of ossified ligamentum flavum in a Chinese population. J Neurosurg Spine. 2005;3(5):348354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Park BC, Min WK, Oh CW, Jeon IH, Kim SY, Kyung HS, Oh SH. Surgical outcome of thoracic myelopathy secondary to ossification of ligamentum flavum. Joint Bone Spine. 2007;74(6):600605.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Ando K, Imagama S, Kaito T, Takenaka S, Sakai K, Egawa S, et al. Outcomes of surgery for thoracic myelopathy owing to thoracic ossification of the ligamentum flavum in a nationwide multicenter prospectively collected study in 223 patients: is instrumented fusion necessary? Spine (Phila Pa 1976).2020;45(3):E170E178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Okada K, Oka S, Tohge K, Ono K, Yonenobu K, Hosoya T. Thoracic myelopathy caused by ossification of the ligamentum flavum. Clinicopathologic study and surgical treatment. Spine (Phila Pa 1976).1991;16(3):280287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Maigne JY, Ayral X, Guérin-Surville H. Frequency and size of ossifications in the caudal attachments of the ligamentum flavum of the thoracic spine. Role of rotatory strains in their development. An anatomic study of 121 spines. Surg Radiol Anat. 1992;14(2):119124.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Smith DE, Godersky JC. Thoracic spondylosis: an unusual cause of myelopathy. Neurosurgery. 1987;20(4):589593.

  • 32

    Kanno H, Takahashi T, Aizawa T, Hashimoto K, Itoi E, Ozawa H. Recurrence of ossification of ligamentum flavum at the same intervertebral level in the thoracic spine: a report of two cases and review of the literature. Eur Spine J. 2018;27(3)(suppl 3):359367.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Barath AS, Wu OC, Patel M, Kasliwal MK. Repeated recurrence of thoracic spine stenosis following decompression alone for ossification of the ligamentum flavum: case report. J Neurosurg Spine. 2018;30(3):332336.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Yonenobu K, Ebara S, Fujiwara K, Yamashita K, Ono K, Yamamoto T, et al. Thoracic myelopathy secondary to ossification of the spinal ligament. J Neurosurg. 1987;66(4):511518.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Ando K, Imagama S, Ito Z, Kobayashi K, Ukai J, Muramoto A, et al. Progressive relapse of ligamentum flavum ossification following decompressive surgery. Asian Spine J. 2014;8(6):835839.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 664 664 95
Full Text Views 125 125 45
PDF Downloads 183 183 78
EPUB Downloads 0 0 0