Biomechanical analysis of stand-alone lumbar interbody cages versus 360° constructs: an in vitro and finite element investigation

Ali Kiapour PhD, MMSc1, Elie Massaad MD, MMSc1, Amin Joukar PhD2,3, Muhamed Hadzipasic MD, PhD1, Ganesh M. Shankar MD, PhD1, Vijay K. Goel PhD2, and John H. Shin MD1
View More View Less
  • 1 Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
  • | 2 Engineering Center for Orthopedic Research Excellence (E-CORE), Department of Bioengineering Engineering, The University of Toledo, Ohio; and
  • | 3 School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Low fusion rates and cage subsidence are limitations of lumbar fixation with stand-alone interbody cages. Various approaches to interbody cage placement exist, yet the need for supplemental posterior fixation is not clear from clinical studies. Therefore, as prospective clinical studies are lacking, a comparison of segmental kinematics, cage properties, and load sharing on vertebral endplates is needed. This laboratory investigation evaluates the mechanical stability and biomechanical properties of various interbody fixation techniques by performing cadaveric and finite element (FE) modeling studies.

METHODS

An in vitro experiment using 7 fresh-frozen human cadavers was designed to test intact spines with 1) stand-alone lateral interbody cage constructs (lateral interbody fusion, LIF) and 2) LIF supplemented with posterior pedicle screw-rod fixation (360° constructs). FE and kinematic data were used to validate a ligamentous FE model of the lumbopelvic spine. The validated model was then used to evaluate the stability of stand-alone LIF, transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF) cages with and without supplemental posterior fixation at the L4–5 level. The FE models of intact and instrumented cases were subjected to a 400-N compressive preload followed by an 8-Nm bending moment to simulate physiological flexion, extension, bending, and axial rotation. Segmental kinematics and load sharing at the inferior endplate were compared.

RESULTS

The FE kinematic predictions were consistent with cadaveric data. The range of motion (ROM) in LIF was significantly lower than intact spines for both stand-alone and 360° constructs. The calculated reduction in motion with respect to intact spines for stand-alone constructs ranged from 43% to 66% for TLIF, 67%–82% for LIF, and 69%–86% for ALIF in flexion, extension, lateral bending, and axial rotation. In flexion and extension, the maximum reduction in motion was 70% for ALIF versus 81% in LIF for stand-alone cases. When supplemented with posterior fixation, the corresponding reduction in ROM was 76%–87% for TLIF, 86%–91% for LIF, and 90%–92% for ALIF. The addition of posterior instrumentation resulted in a significant reduction in peak stress at the superior endplate of the inferior segment in all scenarios.

CONCLUSIONS

Stand-alone ALIF and LIF cages are most effective in providing stability in lateral bending and axial rotation and less so in flexion and extension. Supplemental posterior instrumentation improves stability for all interbody techniques. Comparative clinical data are needed to further define the indications for stand-alone cages in lumbar fusion surgery.

ABBREVIATIONS

ALIF = anterior lumbar interbody fusion; ALL = anterior longitudinal ligament; AP = anteroposterior; BMD = bone mineral density; LED = light-emitting diode; LIF = lateral interbody fusion; PEEK = polyetheretherketone; PLIF = posterior lumbar interbody fusion; ROM = range of motion; TLIF = transforaminal lumbar interbody fusion.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Mummaneni PV, Hussain I, Shaffrey CI, Eastlack RK, Mundis GM, Uribe JS, et al. The minimally invasive interbody selection algorithm for spinal deformity. J Neurosurg Spine. 2021;34(5):741748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Brantigan JW, Neidre A, Toohey JS. The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J. 2004;4(6):681688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Brantigan JW, Steffee AD, Geiger JM. A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing. Spine (Phila Pa 1976).1991;16(6)(suppl):S277S282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Cloward RB. Posterior lumbar interbody fusion updated. Clin Orthop Relat Res. 1985;(193):1619.

  • 5

    Fraser RD. Interbody, posterior, and combined lumbar fusions. Spine (Phila Pa 1976).1995;20(24)(suppl):167S177S.

  • 6

    La Rosa G, Conti A, Cacciola F, Cardali S, La Torre D, Gambadauro NM, Tomasello F. Pedicle screw fixation for isthmic spondylolisthesis: does posterior lumbar interbody fusion improve outcome over posterolateral fusion? J Neurosurg. 2003;99(2)(suppl):143150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Penta M, Fraser RD. Anterior lumbar interbody fusion. A minimum 10-year follow-up. Spine (Phila Pa 1976).1997;22(20):24292434.

  • 8

    Zhao J, Wang X, Hou T, He S. One versus two BAK fusion cages in posterior lumbar interbody fusion to L4–L5 degenerative spondylolisthesis: a randomized, controlled prospective study in 25 patients with minimum two-year follow-up. Spine (Phila Pa 1976).2002;27(24):27532757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Godzik J, Kalb S, Reis MT, Reyes PM, Singh V, Newcomb AGUS, et al. Biomechanical evaluation of interbody fixation with secondary augmentation: lateral lumbar interbody fusion versus posterior lumbar interbody fusion. J Spine Surg. 2018;4(2):180186.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Voronov LI, Vastardis G, Zelenakova J, Carandang G, Havey RM, Waldorff EI, et al. Biomechanical characteristics of an integrated lumbar interbody fusion device. Int J Spine Surg. 2014;8:1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Beaubien BP, Derincek A, Lew WD, Wood KB. In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws. Spine (Phila Pa 1976).2005;30(16):18461851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Karikari IO, Grossi PM, Nimjee SM, et al. Minimally invasive lumbar interbody fusion in patients over seventy years of age: analysis of peri- and post-operative complications. Neurosurgery. 2011;68(4):897902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435443.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Agarwal N, White MD, Zhang X, Alan N, Ozpinar A, Salvetti DJ, et al. Impact of endplate-implant area mismatch on rates and grades of subsidence following stand-alone lateral lumbar interbody fusion: an analysis of 623 levels. J Neurosurg Spine. 2020;33(1):1216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. J Spinal Disord Tech. 2008;21(7):459467.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Aryan HE, Newman CB, Gold JJ, Acosta FL Jr, Coover C, Ames CP. Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5–S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg. 2008;51(4):225230.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Daffner SD, Wang JC. Migrated XLIF cage: case report and discussion of surgical technique. Orthopedics. 2010;33(7):518.

  • 19

    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Dua K, Kepler CK, Huang RC, Marchenko A. Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J. 2010;10(9):e11e15.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):3437.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Tempel ZJ, McDowell MM, Panczykowski DM, Gandhoke GS, Hamilton DK, Okonkwo DO, Kanter AS. Graft subsidence as a predictor of revision surgery following stand-alone lateral lumbar interbody fusion. J Neurosurg Spine. 2018;28(1):5056.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Deluzio KJ, Lucio JC, Rodgers WB. Value and cost in less invasive spinal fusion surgery: lessons from a community hospital. SAS J. 2010;4(2):3740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Palepu V, Helgeson M, Molyneaux-Francis M, Nagaraja S. The effects of bone microstructure on subsidence risk for ALIF, LLIF, PLIF, and TLIF spine cages. J Biomech Eng. Published online December 5, 2018.doi:10.1115/1.4042181

    • Search Google Scholar
    • Export Citation
  • 25

    Schleifenbaum S, Heilmann R, Riemer E, Reise R, Heyde CE, Jarvers JS, et al. A biomechanical model for testing cage subsidence in spine specimens with osteopenia or osteoporosis under permanent maximum load. World Neurosurg. 2021;152:e540e548.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Ullrich BW, Schenk P, Spiegl UJ, Mendel T, Hofmann GO. Hounsfield units as predictor for cage subsidence and loss of reduction: following posterior-anterior stabilization in thoracolumbar spine fractures. Eur Spine J. 2018;27(12):30343042.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Zajonz D, Franke AC, von der Höh N, Voelker A, Moche M, Gulow J, Heyde CE. Is the radiographic subsidence of stand-alone cages associated with adverse clinical outcomes after cervical spine fusion? An observational cohort study with 2-year follow-up outcome scoring. Patient Saf Surg. 2014;8(1):43.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Behrbalk E, Uri O, Parks RM, Musson R, Soh RC, Boszczyk BM. Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2. Eur Spine J. 2013;22(12):28692875.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Kim MC, Chung HT, Cho JL, Kim DJ, Chung NS. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2013;26(2):8792.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Chatham LS, Patel VV, Yakacki CM, Dana Carpenter R. Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. J Biomech Eng. 2017;139(5).

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Godzik J, Martinez-Del-Campo E, Newcomb AGUS, Reis MT, Perez-Orribo L, Whiting AC, et al. Biomechanical stability afforded by unilateral versus bilateral pedicle screw fixation with and without interbody support using lateral lumbar interbody fusion. World Neurosurg. 2018;113:e439e445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Goel VK, Goyal S, Clark C, Nishiyama K, Nye T. Kinematics of the whole lumbar spine. Effect of discectomy. Spine (Phila Pa 1976).1985;10(6):543554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S, et al. Effects of Charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine (Phila Pa 1976).2005;30(24):27552764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, et al. Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination. Spine J. 2006;6(6):659666.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Kiapour A, Ambati D, Hoy RW, Goel VK. Effect of graded facetectomy on biomechanics of Dynesys dynamic stabilization system. Spine (Phila Pa 1976).2012;37(10):E581E589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Sairyo K, Sakai T, Yasui N, Kiapour A, Biyani A, Ebraheim N, Goel VK. Newly occurred L4 spondylolysis in the lumbar spine with pre-existence L5 spondylolysis among sports players: case reports and biomechanical analysis. Arch Orthop Trauma Surg. 2009;129(10):14331439.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Joukar A, Kiapour A, Elgafy H, Erbulut DU, Agarwal AK, Goel VK. Biomechanics of the sacroiliac joint: surgical treatments. Int J Spine Surg. 2020;14(3):355367.

  • 38

    Wang ST, Goel VK, Fu CY, Kubo S, Choi W, Liu CL, Chen TH. Comparison of two interbody fusion cages for posterior lumbar interbody fusion in a cadaveric model. Int Orthop. 2006;30(4):299304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Wang ST, Goel VK, Kubo S, Choi W, Coppes JK, Liu CL, Chen TH. Comparison of stabilities between obliquely and conventionally inserted Bagby and Kuslich cages as posterior lumbar interbody fusion in a cadaver model. J Chin Med Assoc. 2003;66(11):676681.

    • Search Google Scholar
    • Export Citation
  • 40

    Kim YH, Wu M, Kim K. Stress analysis of osteoporotic lumbar vertebra using finite element model with microscaled beam-shell trabecular-cortical structure. J Appl Math. 2013;2013:285165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Vadapalli S, Robon M, Biyani A, Sairyo K, Khandha A, Goel VK. Effect of lumbar interbody cage geometry on construct stability: a cadaveric study. Spine (Phila Pa 1976).2006;31(19):21892194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion—a finite element study. Spine (Phila Pa 1976).2006;31(26):E992E998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Massaad E, Fatima N, Kiapour A, Hadzipasic M, Shankar GM, Shin JH. Polyetheretherketone versus titanium cages for posterior lumbar interbody fusion: meta-analysis and review of the literature. Neurospine. 2020;17(2):473.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS, Uribe JS. Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci. 2015;22(4):740746.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Park P, Fu KM, Eastlack RK, Tran S, Mundis GM, Uribe JS, et al. Is achieving optimal spinopelvic parameters necessary to obtain substantial clinical benefit? An analysis of patients who underwent circumferential minimally invasive surgery or hybrid surgery with open posterior instrumentation. J Neurosurg Spine. 2019;30(6):833838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Morgan CD, Walker CT, Godzik J, Ohiorhenuan IE, Catapano JS, Hemphill C, Uribe JS. When indirect decompression fails: a review of 220 consecutive direct lateral interbody fusions and unplanned secondary decompression. Spine (Phila Pa 1976).2021;46(16):10811086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Park PJ, Lehman RA. Optimizing the spinal interbody implant: current advances in material modification and surface treatment technologies. Curr Rev Musculoskelet Med. 2020;13(6):688695.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2721 2721 474
Full Text Views 229 229 50
PDF Downloads 289 289 91
EPUB Downloads 0 0 0