Assessment of L5–S1 anterior lumbar interbody fusion stability in the setting of lengthening posterior instrumentation constructs: a cadaveric biomechanical study

View More View Less
  • 1 Center for Spine Health, Neurological Institute, Cleveland Clinic, Cleveland;
  • | 2 Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland;
  • | 3 Lerner Research Institute, Cleveland Clinic, Cleveland; and
  • | 4 Department of Quantitative Health Services, Cleveland Clinic, Cleveland, Ohio
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Excessive stress and motion at the L5–S1 level can lead to degenerative changes, especially in patients with posterior instrumentation suprajacent to L5. Attention has turned to utilization of L5–S1 anterior lumbar interbody fusion (ALIF) to stabilize the lumbosacral junction. However, questions remain regarding the effectiveness of stand-alone ALIF in the setting of prior posterior instrumented fusions terminating at L5. The purpose of this study was to assess the biomechanical stability of an L5–S1 ALIF with increasing lengths of posterior thoracolumbar constructs.

METHODS

Seven human cadaveric spines (T9–sacrum) were instrumented with pedicle screws from T10 to L5 and mounted to a 6 degrees-of-freedom robot. Posterior fusion construct lengths (T10–L5, T12–L5, L2–5, and L4–5) were instrumented to each specimen, and torque-fusion level relationships were determined for each construct in flexion-extension, axial rotation, and lateral bending. A stand-alone L5–S1 ALIF was then instrumented, and L5–S1 motion was measured as increasing pure moments (2 to 12 Nm) were applied. Motion reduction was calculated by comparing L5–S1 motion across the ALIF and non-ALIF states.

RESULTS

The average motion at L5–S1 in axial rotation, flexion-extension, and lateral bending was assessed for each fusion construct with and without ALIF. After adding ALIF to a posterior fusion, L5–S1 motion was significantly reduced relative to the non-ALIF state in all but one fused surgical condition (p < 0.05). Longer fusions with ALIF produced larger L5–S1 motions, and in some cases resulted in motions higher than native state motion.

CONCLUSIONS

Posterior fusion constructs up to L4–5 could be appropriately stabilized by a stand-alone L5–S1 ALIF when using a nominal threshold of 80% reduction in native motion as a potential positive indicator of fusion. The results of this study allow conclusions to be drawn from a biomechanical standpoint; however, the clinical implications of these data are not well defined. These findings, when taken in appropriate clinical context, can be used to better guide clinicians seeking to treat L5–S1 pathology in patients with prior posterior thoracolumbar constructs.

ABBREVIATIONS

ALIF = anterior lumbar interbody fusion; ASD = adjacent-segment disease; ROM = range of motion.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Benzel E. Biomechanics of Spine Stabilization. 3rd ed. Thieme;2015.

  • 2

    Helgeson MD, Bevevino AJ, Hilibrand AS. Update on the evidence for adjacent segment degeneration and disease. Spine J. 2013;13(3):342351.

  • 3

    Axelsson P, Johnsson R, Strömqvist B. The spondylolytic vertebra and its adjacent segment. Mobility measured before and after posterolateral fusion. Spine (Phila Pa 1976).1997;22(4):414417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976).2004;29(17):19381944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Min JH, Jang JS, Lee SH. Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine. 2007;7(1):2126.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Zhong ZM, Deviren V, Tay B, Burch S, Berven SH. Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis: incidence and risk factors. Clin Neurol Neurosurg. 2017;156:2934.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Ahn DK, Park HS, Choi DJ, Kim KS, Yang SJ. Survival and prognostic analysis of adjacent segments after spinal fusion. Clin Orthop Surg. 2010;2(3):140147.

  • 8

    Lee CS, Hwang CJ, Lee SW, Ahn YJ, Kim YT, Lee DH, Lee MY. Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J. 2009;18(11):16371643.

  • 9

    Lee JC, Choi SW. Adjacent segment pathology after lumbar spinal fusion. Asian Spine J. 2015;9(5):807817.

  • 10

    Alentado VJ, Lubelski D, Healy AT, Orr RD, Steinmetz MP, Benzel EC, Mroz TE. Predisposing characteristics of adjacent segment disease after lumbar fusion. Spine (Phila Pa 1976).2016;41(14):11671172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Sears WR, Sergides IG, Kazemi N, Smith M, White GJ, Osburg B. Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J. 2011;11(1):1120.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Weistroffer JK, Perra JH, Lonstein JE, Schwender JD, Garvey TA, Transfeldt EE, et al. Complications in long fusions to the sacrum for adult scoliosis: minimum five-year analysis of fifty patients. Spine (Phila Pa 1976).2008;33(13):14781483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Lee CS, Chung SS, Choi SW, Yu JW, Sohn MS. Critical length of fusion requiring additional fixation to prevent nonunion of the lumbosacral junction. Spine (Phila Pa 1976).2010;35(6):E206E211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Cunningham BW, Sefter JC, Hu N, Kim SW, Bridwell KH, McAfee PC. Biomechanical comparison of iliac screws versus interbody femoral ring allograft on lumbosacral kinematics and sacral screw strain. Spine (Phila Pa 1976).2010;35(6):E198E205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Bridwell KH. Utilization of iliac screws and structural interbody grafting for revision spondylolisthesis surgery. Spine. 2005;30(6):S88S96.

  • 16

    Fleischer GD, Kim YJ, Ferrara LA, Freeman AL, Boachie-Adjei O. Biomechanical analysis of sacral screw strain and range of motion in long posterior spinal fixation constructs: effects of lumbosacral fixation strategies in reducing sacral screw strains. Spine (Phila Pa 1976).2012;37(3):E163E169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Giang G, Mobbs R, Phan S, Tran TM, Phan K. Evaluating outcomes of stand-alone anterior lumbar interbody fusion: a systematic review. World Neurosurg. 2017;104:259271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Oxland TR, Lund T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J. 2000;9(suppl 1):S95S101.

  • 19

    Godzik J, Hlubek RJ, Newcomb AGUS, Lehrman JN, de Andrada Pereira B, Farber SH, et al. Supplemental rods are needed to maximally reduce rod strain across the lumbosacral junction with TLIF but not ALIF in long constructs. Spine J. 2019;19(6):11211131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Hlubek RJ, Godzik J, Newcomb AGUS, Lehrman JN, de Andrada B, Bohl MA, et al. Iliac screws may not be necessary in long-segment constructs with L5-S1 anterior lumbar interbody fusion: cadaveric study of stability and instrumentation strain. Spine J. 2019;19(5):942950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Lee BS, Walsh KM, Healy AT, Colbrunn R, Butler RS, Goodwin RC, et al. Biomechanics of L5/S1 in long thoracolumbosacral constructs: a cadaveric study. Global Spine J. 2018;8(6):607614.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Khashan M, Camisa W, Berven S, Leasure J. Stand-alone anterior interbody fusion for substitution of iliac fixation in long spinal fixation constructs. Arch Orthop Trauma Surg. 2018;138(4):479486.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Kleck CJ, Illing D, Lindley EM, Noshchenko A, Patel VV, Barton C, et al. Strain in posterior instrumentation resulted by different combinations of posterior and anterior devices for long spine fusion constructs. Spine Deform. 2017;5(1):2736.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Techy F, Mageswaran P, Colbrunn RW, Bonner TF, McLain RF. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Spine J. 2013;13(5):572579.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    . AVS Anchor-L Lumbar Cage System. Accessed October 13, 2021. http://cdn.stryker.com/SYKGCSDOC-2-41516

  • 27

    Kornblum MB, Turner AWL, Cornwall GB, Zatushevsky MA, Phillips FM. Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws. Spine J. 2013;13(1):7784.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Glazer PA, Colliou O, Lotz JC, Bradford DS. Biomechanical analysis of lumbosacral fixation.Spine (Phila Pa 1976). 1996.

  • 29

    Kostuik JP, Valdevit A, Chang HG, Kanzaki K. Biomechanical testing of the lumbosacral spine. Spine (Phila Pa 1976).1998;23(16):17211728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Lai PL, Chen LH, Niu CC, Fu TS, Chen WJ. Relation between laminectomy and development of adjacent segment instability after lumbar fusion with pedicle fixation. Spine (Phila Pa 1976).2004;29(22):25272532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine (Phila Pa 1976).2006;31(20):23292336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Rao PJ, Phan K, Giang G, Maharaj MM, Phan S, Mobbs RJ. Subsidence following anterior lumbar interbody fusion (ALIF): a prospective study. J Spine Surg. 2017;3(2):168175.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Behrbalk E, Uri O, Parks RM, Musson R, Soh RCC, Boszczyk BM. Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2. Eur Spine J. 2013;22(12):28692875.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Kroeze RJ, van der Veen AJ, van Royen BJ, Bank RA, Helder MN, Smit TH. Relation between radiological assessment and biomechanical stability of lumbar interbody fusion in a large animal model. Eur Spine J. 2013;22(12):27312739.

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1128 1128 282
Full Text Views 125 125 51
PDF Downloads 173 173 86
EPUB Downloads 0 0 0