Removal of instrumentation for postoperative spine infection: systematic review

View More View Less
  • 1 Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Currently, no consensus exists as to whether patients who develop infection of the surgical site after undergoing instrumented fusion should have their implants removed at the time of wound debridement. Instrumentation removal may eliminate a potential infection nidus, but removal may also destabilize the patient’s spine. The authors sought to summarize the existing evidence by systematically reviewing published studies that compare outcomes between patients undergoing wound washout and instrumentation removal with outcomes of patients undergoing wound washout alone. The primary objectives were to determine 1) whether instrumentation removal from an infected wound facilitates infection clearance and lowers morbidity, and 2) whether the chronicity of the underlying infection affects the decision to remove instrumentation.

METHODS

PRISMA guidelines were used to review the PubMed/MEDLINE, Embase, Cochrane Library, Scopus, Web of Science, and ClinicalTrials.gov databases to identify studies that compared patients with implants removed and patients with implants retained. Outcomes of interest included mortality, rate of repeat wound washout, and loss of correction.

RESULTS

Fifteen articles were included. Of 878 patients examined in these studies, 292 (33%) had instrumentation removed. Patient populations were highly heterogeneous, and outcome data were limited. Available data suggested that rates of reoperation, pseudarthrosis, and death were higher in patients who underwent instrumentation removal at the time of initial washout. Three studies recommended that instrumentation be uniformly removed at the time of wound washout. Five studies favored retaining the original instrumentation. Six studies favored retention in early infections but removal in late infections.

CONCLUSIONS

The data on this topic remain heterogeneous and low in quality. Retention may be preferred in the setting of early infection, when the risk of underlying spine instability is still high and the risk of mature biofilm formation on the implants is low. However, late infections likely favor instrumentation removal. Higher-quality evidence from large, multicenter, prospective studies is needed to reach generalizable conclusions capable of guiding clinical practice.

ABBREVIATIONS

CNS = coagulase-negative Staphylococcus; IV = intravenous; LOS = length of stay; MRSA = methicillin-resistant Staphylococcus aureus; MSSA = methicillin-sensitive Staphylococcus aureus; SSI = surgical site infection.
Figure from Funaba et al. (pp 308–319).

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Tyrrell PN, Cassar-Pullicino VN, McCall IW. Spinal infection. Eur Radiol. 1999;9(6):10661077.

  • 2

    Duarte RM, Vaccaro AR. Spinal infection: state of the art and management algorithm. Eur Spine J. 2013;22(12):27872799.

  • 3

    Lener S, Hartmann S, Barbagallo GMV, et al. Management of spinal infection: a review of the literature. Acta Neurochir (Wien). 2018;160(3):487496.

    • Search Google Scholar
    • Export Citation
  • 4

    Gerometta A, Rodriguez Olaverri JC, Bitan F. Infections in spinal instrumentation. Int Orthop. 2012;36(2):457464.

  • 5

    Kasliwal MK, Tan LA, Traynelis VC. Infection with spinal instrumentation: review of pathogenesis, diagnosis, prevention, and management. Surg Neurol Int. 2013;4(6)(suppl 5):S392S403.

    • Search Google Scholar
    • Export Citation
  • 6

    Chaudhary SB, Vives MJ, Basra SK, Reiter MF. Postoperative spinal wound infections and postprocedural diskitis. J Spinal Cord Med. 2007;30(5):441451.

    • Search Google Scholar
    • Export Citation
  • 7

    Weinstein MA, McCabe JP, Cammisa FP Jr. Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord. 2000;13(5):422426.

    • Search Google Scholar
    • Export Citation
  • 8

    Weiss LE, Vaccaro AR, Scuderi G, et al. Pseudarthrosis after postoperative wound infection in the lumbar spine. J Spinal Disord. 1997;10(6):482487.

    • Search Google Scholar
    • Export Citation
  • 9

    Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33(8):13871392.

  • 10

    Schaber JA, Triffo WJ, Suh SJ, et al. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun. 2007;75(8):37153721.

    • Search Google Scholar
    • Export Citation
  • 11

    Sharma G, Sharma S, Sharma P, et al. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol. 2016;121(2):309319.

    • Search Google Scholar
    • Export Citation
  • 12

    Yin D, Liu B, Chang Y, et al. Management of late-onset deep surgical site infection after instrumented spinal surgery. BMC Surg. 2018;18(1):121.

    • Search Google Scholar
    • Export Citation
  • 13

    Hickok NJ. What are biofilms? Spine. (Phila Pa 1976). 2018;43(7):S7S8.

  • 14

    Atesok K, Vaccaro A, Stippler M, et al. Fate of hardware in spinal infections. Surg Infect (Larchmt). 2020;21(5):404410.

  • 15

    Levels of evidence for primary research question. North American Spine Society.Accessed January 22, 2021. https://www.spine.org/Portals/0/Assets/Downloads/ResearchClinicalCare/LevelsofEvidence.pdf

    • Search Google Scholar
    • Export Citation
  • 16

    Ho C, Skaggs DL, Weiss JM, Tolo VT. Management of infection after instrumented posterior spine fusion in pediatric scoliosis. Spine (Phila Pa 1976). 2007;32(24):27392744.

    • Search Google Scholar
    • Export Citation
  • 17

    Glotzbecker MP, Gomez JA, Miller PE, et al. Management of spinal implants in acute pediatric surgical site infections: a multicenter study. Spine Deform. 2016;4(4):277282.

    • Search Google Scholar
    • Export Citation
  • 18

    Khoshbin A, Lysenko M, Law P, Wright JG. Outcomes of infection following pediatric spinal fusion. Can J Surg. 2015;58(1):0060146014.

  • 19

    Messina AF, Berman DM, Ghazarian SR, et al. The management and outcome of spinal implant-related infections in pediatric patients: a retrospective review. Pediatr Infect Dis J. 2014;33(7):720723.

    • Search Google Scholar
    • Export Citation
  • 20

    Kabirian N, Akbarnia BA, Pawelek JB, et al. Deep surgical site infection following 2344 growing-rod procedures for early-onset scoliosis: risk factors and clinical consequences. J Bone Joint Surg Am. 2014;96(15):e128.

    • Search Google Scholar
    • Export Citation
  • 21

    Cahill PJ, Warnick DE, Lee MJ, et al. Infection after spinal fusion for pediatric spinal deformity: thirty years of experience at a single institution. Spine (Phila Pa 1976). 2010;35(12):12111217.

    • Search Google Scholar
    • Export Citation
  • 22

    Bémer P, Corvec S, Tariel S, et al. Significance of Propionibacterium acnes-positive samples in spinal instrumentation. Spine (Phila Pa 1976). 2008;33(26):E971E976.

    • Search Google Scholar
    • Export Citation
  • 23

    Chang CW, Fu TS, Chen WJ, et al. Management of infected transforaminal lumbar interbody fusion cage in posterior degenerative lumbar spine surgery. World Neurosurg. 2019;126:e330e341.

    • Search Google Scholar
    • Export Citation
  • 24

    Pull ter Gunne AF, Mohamed AS, Skolasky RL, et al. The presentation, incidence, etiology, and treatment of surgical site infections after spinal surgery. Spine (Phila Pa 1976). 2010;35(13):13231328.

    • Search Google Scholar
    • Export Citation
  • 25

    Chen SH, Lee CH, Huang KC, et al. Postoperative wound infection after posterior spinal instrumentation: analysis of long-term treatment outcomes. Eur Spine J. 2015;24(3):561570.

    • Search Google Scholar
    • Export Citation
  • 26

    Cho OH, Bae IG, Moon SM, et al. Therapeutic outcome of spinal implant infections caused by Staphylococcus aureus: a retrospective observational study. Medicine (Baltimore). 2018;97(40):e12629.

    • Search Google Scholar
    • Export Citation
  • 27

    Hey HWD, Ng Li WN, Kumar N, et al. Spinal implants can be retained in patients with deep spine infection: a cohort study. J Orthop Trauma Rehabil. 2018;24(1):3438.

    • Search Google Scholar
    • Export Citation
  • 28

    Ishii M, Iwasaki M, Ohwada T, et al. Postoperative deep surgical-site infection after instrumented spinal surgery: a multicenter study. Global Spine J. 2013;3(2):95102.

    • Search Google Scholar
    • Export Citation
  • 29

    Khanna K, Janghala A, Sing D, et al. An analysis of implant retention and antibiotic suppression in instrumented spine infections: a preliminary data set of 67 patients. Int J Spine Surg. 2018;12(4):490497.

    • Search Google Scholar
    • Export Citation
  • 30

    Kowalski TJ, Berbari EF, Huddleston PM, et al. The management and outcome of spinal implant infections: contemporary retrospective cohort study. Clin Infect Dis. 2007;44(7):913920.

    • Search Google Scholar
    • Export Citation
  • 31

    Aleem IS, Tan LA, Nassr A, Riew KD. Surgical site infection prevention following spine surgery. Global Spine J. 2020;10(1)(suppl):92S98S.

    • Search Google Scholar
    • Export Citation
  • 32

    Blumberg TJ, Woelber E, Bellabarba C, et al. Predictors of increased cost and length of stay in the treatment of postoperative spine surgical site infection. Spine J. 2018;18(2):300306.

    • Search Google Scholar
    • Export Citation
  • 33

    Veeravagu A, Patil CG, Lad SP, Boakye M. Risk factors for postoperative spinal wound infections after spinal decompression and fusion surgeries. Spine (Phila Pa 1976). 2009;34(17):18691872.

    • Search Google Scholar
    • Export Citation
  • 34

    Petilon JM, Glassman SD, Dimar JR, Carreon LY. Clinical outcomes after lumbar fusion complicated by deep wound infection: a case-control study. Spine (Phila Pa 1976). 2012;37(16):13701374.

    • Search Google Scholar
    • Export Citation
  • 35

    Bernatz JT, Tueting JL, Anderson PA. Thirty-day readmission rates in orthopedics: a systematic review and meta-analysis. PLoS One. 2015;10(4):e0123593.

    • Search Google Scholar
    • Export Citation
  • 36

    Hegde V, Meredith DS, Kepler CK, Huang RC. Management of postoperative spinal infections. World J Orthop. 2012;3(11):182189.

  • 37

    Kim JI, Suh KT, Kim SJ, Lee JS. Implant removal for the management of infection after instrumented spinal fusion. J Spinal Disord Tech. 2010;23(4):258265.

    • Search Google Scholar
    • Export Citation
  • 38

    Fang XT, Wood KB. Management of postoperative instrumented spinal wound infection. Chin Med J (Engl). 2013;126(20):38173821.

  • 39

    Tominaga H, Setoguchi T, Kawamura H, et al. Risk factors for unavoidable removal of instrumentation after surgical site infection of spine surgery: a retrospective case-control study. Medicine (Baltimore). 2016;95(43):e5118.

    • Search Google Scholar
    • Export Citation
  • 40

    Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl. J Med. 2004;351(16):16451654.

  • 41

    Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397409.

    • Search Google Scholar
    • Export Citation
  • 42

    Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: an overview of the evidence. Adv Wound Care (New Rochelle).2015;4(7):373381.

  • 43

    Schierle CF, De la Garza M, Mustoe TA, Galiano RD. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen. 2009;17(3):354359.

    • Search Google Scholar
    • Export Citation
  • 44

    Chusri S, Sompetch K, Mukdee S, et al. Inhibition of Staphylococcus epidermidis biofilm formation by traditional thai herbal recipes used for wound treatment. Evid Based Complement Alternat Med. 2012;2012 159797.

    • Search Google Scholar
    • Export Citation
  • 45

    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):13181322.

    • Search Google Scholar
    • Export Citation
  • 46

    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135138.

  • 47

    Ahmed R, Greenlee JDW, Traynelis VC. Preservation of spinal instrumentation after development of postoperative bacterial infections in patients undergoing spinal arthrodesis. J Spinal Disord Tech. 2012;25(6):299302.

    • Search Google Scholar
    • Export Citation
  • 48

    Collins I, Wilson-MacDonald J, Chami G, et al. The diagnosis and management of infection following instrumented spinal fusion. Eur Spine J. 2008;17(3):445450.

    • Search Google Scholar
    • Export Citation
  • 49

    Brailovski V, Facchinello Y, Brummund M, et al. Ti–Ni rods with variable stiffness for spine stabilization: manufacture and biomechanical evaluation. Shape Memory Superelasticity. 2016;2(1):311.

    • Search Google Scholar
    • Export Citation
  • 50

    Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol. 2015;5:85.

    • Search Google Scholar
    • Export Citation
  • 51

    Claro T, Widaa A, O’Seaghdha M, et al. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One. 2011;6(4):e18748.

    • Search Google Scholar
    • Export Citation
  • 52

    Widaa A, Claro T, Foster TJ, et al. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One. 2012;7(7):e40586.

    • Search Google Scholar
    • Export Citation
  • 53

    Jin T, Zhu YL, Li J, et al. Staphylococcal protein A, Panton-Valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cell Physiol Biochem. 2013;32(2):322333.

    • Search Google Scholar
    • Export Citation
  • 54

    Young AB, Cooley ID, Chauhan VS, Marriott I. Causative agents of osteomyelitis induce death domain-containing TNF-related apoptosis-inducing ligand receptor expression on osteoblasts. Bone. 2011;48(4):857863.

    • Search Google Scholar
    • Export Citation
  • 55

    Johansen LK, Iburg TM, Nielsen OL, et al. Local osteogenic expression of cyclooxygenase-2 and systemic response in porcine models of osteomyelitis. Prostaglandins Other Lipid Mediat. 2012;97(3-4):103108.

    • Search Google Scholar
    • Export Citation
  • 56

    Trouillet-Assant S, Gallet M, Nauroy P, et al. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis. 2015;211(4):571581.

    • Search Google Scholar
    • Export Citation
  • 57

    Somayaji SN, Ritchie S, Sahraei M, et al. Staphylococcus aureus induces expression of receptor activator of NF-κB ligand and prostaglandin E2 in infected murine osteoblasts. Infect Immun. 2008;76(11):51205126.

    • Search Google Scholar
    • Export Citation
  • 58

    Koseki H, Yonekura A, Shida T, et al. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PLoS One. 2014;9(10):e107588.

    • Search Google Scholar
    • Export Citation
  • 59

    Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):158168.

    • Search Google Scholar
    • Export Citation
  • 60

    Ayers R, Patel V, Burger E, et al. Corrosion of titanium spinal explants is similar to that observed in oil field line pipe steel: evidence of microbial-influenced corrosion in vivo. Orthopedics. 2020;43(1):6267.

    • Search Google Scholar
    • Export Citation
  • 61

    Cury RDPL, Cinagawa EHT, Camargo OPA, et al. Treatment of infection after total knee arthroplasty. Acta Ortop Bras. 2015;23(5):239243.

  • 62

    Abbey DM, Turner DM, Warson JS, et al. Treatment of postoperative wound infections following spinal fusion with instrumentation. J Spinal Disord. 1995;8(4):278283.

    • Search Google Scholar
    • Export Citation
  • 63

    Mendenhall S, Mobasser D, Relyea K, Jea A. Spinal instrumentation in infants, children, and adolescents: a review. J Neurosurg Pediatr. 2019;23(1):115.

    • Search Google Scholar
    • Export Citation
  • 64

    Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004;8:3757.

    • Search Google Scholar
    • Export Citation
  • 65

    Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(suppl 2):6881.

    • Search Google Scholar
    • Export Citation
  • 66

    Metsemakers WJ, Schmid T, Zeiter S, et al. Titanium and steel fracture fixation plates with different surface topographies: Influence on infection rate in a rabbit fracture model. Injury. 2016;47(3):633639.

    • Search Google Scholar
    • Export Citation
  • 67

    McEvoy JP, Martin P, Khaleel A, Dissanayeke S. Titanium Kirschner wires resist biofilms better than stainless steel and hydroxyapatite-coated wires: an in vitro study. Strateg Trauma Limb Reconstr. 2019;14(2):5764.

    • Search Google Scholar
    • Export Citation
  • 68

    Schildhauer TA, Robie B, Muhr G, Köller M. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma. 2006;20(7):476484.

    • Search Google Scholar
    • Export Citation
  • 69

    Rochford ETJ, Richards RG, Moriarty TF. Influence of material on the development of device-associated infections. Clin Microbiol Infect. 2012;18(12):11621167.

    • Search Google Scholar
    • Export Citation
  • 70

    Mödinger Y, Teixeira GQ, Neidlinger-Wilke C, Ignatius A. Role of the complement system in the response to orthopedic biomaterials. Int J Mol Sci. 2018;19(11):E3367.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 360 360 128
Full Text Views 153 153 26
PDF Downloads 203 203 35
EPUB Downloads 0 0 0