Intradural spinal cord arteriovenous shunts in a personal series of 210 patients: novel classification with emphasis on anatomical disposition and angioarchitectonic distribution, related to spinal cord histogenetic units

View More View Less
  • 1 Department of Diagnostic and Interventional Neuroradiology, Hôpital Foch, Suresnes, Hauts-de-Seine, France;
  • | 2 Department of Neurosurgery, Keio University School of Medicine, Shinjuku, Tokyo; and
  • | 3 Department of Neurosurgery, Ashikaga Red Cross Hospital, Ashikaga, Tochigi, Japan
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Few classifications of intradural spinal arteriovenous shunts (ID-SAVSs) have considered their anatomical localization in relation to their phenotype and angioarchitectonics. The authors propose another vision of ID-SAVSs allowing a reappraised classification based on analysis of the anatomical disposition, angioarchitecture, and histogenetic location of these vascular malformations.

METHODS

The radiological and clinical records of 210 patients with ID-SAVSs were retrospectively reviewed, considering their localization, vascular architectonics, and correlation with the 5 histogenetic units of the spinal cord. Among these, 183 files with complete data allowed precise analysis of the ID-SAVSs.

RESULTS

Among these 183 files (162 and 21 cases with single and multiple lesions, respectively), different entities were identified: 13 pial macro arteriovenous fistulas (MAVFs), 92 pial micro arteriovenous fistulas (mAVFs), 33 superficial pial niduses, and 69 intramedullary niduses. Thirteen sulcal shunts (either fistulas or niduses) were considered subtypes of pial lesions. Among the 21 multiple cases, 11 were monomyelomeric while 10 were multimyelomeric. Pial lesions, either fistulas or niduses, were dominantly vascularized by pial arteries (anterior or posterior depending on the localization of the shunt) and occasionally (except for MAVFs) by transmedullary arteries. Pial niduses occasionally extended into the funiculus by recruiting intrinsic veins or by extension of the nidus itself inside the white matter. Intramedullary niduses were always vascularized by both centrifugal and centripetal feeders, respectively, from sulcal arteries (SAs) and pial arteries. Sulcal lesions are pial lesions located within the ventral median sulcus and vascularized by SAs and veins. Single or multiple ID-SAVSs can be part of various syndromes such as hereditary hemorrhagic telangiectasia, Parkes-Weber, RASA1, CLOVES, and spinal arteriovenous metameric syndromes. Histogenetic analyses revealed a specific distribution of each ID-SAVS in the 5 histogenetic units of the spinal cord: intramedullary niduses were found almost equally from cervical to thoracic units, while MAVFs and mAVFs were mostly found from thoracic to postcrural ones. Pial niduses showed intermediate features between intramedullary and fistulous lesions and were mostly distributed from brachial to crural segments.

CONCLUSIONS

Precise analysis of the anatomical disposition of ID-SAVSs in relation to functional histogenetic units allows a better understanding of these lesions and improved therapeutic management.

ABBREVIATIONS

ASA = anterior spinal artery; ASV = anterior spinal vein; AVM = arteriovenous malformation; CLOVES = congenital lipomatous overgrowth, vascular malformations, epidermal nevis, spinal/skeletal anomalies/scoliosis; DSA = digital subtraction angiography; HHT = hereditary hemorrhagic telangiectasia; ID-SAVS = intradural spinal arteriovenous shunt; MAVF = macro arteriovenous fistula; mAVF = micro arteriovenous fistula; PSA = posterior spinal artery; PSV = posterior spinal vein; PWS = Parkes-Weber syndrome; SA = sulcal artery; SAMS = spinal arteriovenous metameric syndrome.

Supplementary Materials

    • Supplemental Figs. 1–7 (PDF 35,550 KB)

Composite figure based on findings from the article by Salas-Vega et al. (pp 864–870), which show that elective lumbar laminectomies occurring later in the workweek are associated with longer hospital stays (in days).

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Katsuhiro Mizutani: Ashikaga Red Cross Hospital, Ashikaga, Tochigi, Japan. katsu512@yahoo.co.jp.

INCLUDE WHEN CITING Published online April 2, 2021; DOI: 10.3171/2020.9.SPINE201258.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Di Chiro G, Doppman JL, Ommaya AK. Radiology of spinal cord arteriovenous malformations. Prog Neurol Surg. 1971;4:329354.

  • 2

    Heros RC, Debrun GM, Ojemann RG, et al. . Direct spinal arteriovenous fistula: a new type of spinal AVM. Case report. J Neurosurg. 1986;64(1):134139.

    • Search Google Scholar
    • Export Citation
  • 3

    Mourier KL, Gobin YP, George B, et al. . Intradural perimedullary arteriovenous fistulae: results of surgical and endovascular treatment in a series of 35 cases. Neurosurgery. 1993;32(6):885891.

    • Search Google Scholar
    • Export Citation
  • 4

    Spetzler RF, Detwiler PW, Riina HA, Porter RW. Modified classification of spinal cord vascular lesions. J Neurosurg. 2002;96 (2)(suppl):145156.

    • Search Google Scholar
    • Export Citation
  • 5

    Rodesch G, Hurth M, Alvarez H, et al. . Classification of spinal cord arteriovenous shunts: proposal for a reappraisal—the Bicêtre experience with 155 consecutive patients treated between 1981 and 1999. Neurosurgery. 2002;51(2):374380.

    • Search Google Scholar
    • Export Citation
  • 6

    Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery. 2006;59 (5)(suppl 3):S195S201, S3S13.

    • Search Google Scholar
    • Export Citation
  • 7

    Rosenblum B, Oldfield EH, Doppman JL, Di Chiro G. Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVM’s in 81 patients. J Neurosurg. 1987;67(6):795802.

    • Search Google Scholar
    • Export Citation
  • 8

    Anson JA, Spetzler RF. Classification of spinal arteriovenous malformations and implications for treatment. BNI Q. 1992;8(2):28.

  • 9

    Krings T, Thron AK, Geibprasert S, et al. . Endovascular management of spinal vascular malformations. Neurosurg Rev. 2010;33:1.

  • 10

    Lee YJ, Terbrugge KG, Saliou G, Krings T. Clinical features and outcomes of spinal cord arteriovenous malformations: comparison between nidus and fistulous types. Stroke. 2014;45(9):26062612.

    • Search Google Scholar
    • Export Citation
  • 11

    Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron. 2013;80(1):1234.

    • Search Google Scholar
    • Export Citation
  • 12

    Watson C, Paxinos G, Kayalioglu G. The Spinal Cord: A Christopher and Dana Reeve Foundation Text and Atlas. Elsevier/Academic Press; 2009.

    • Search Google Scholar
    • Export Citation
  • 13

    Rodesch G, Hurth M, Alvarez H, et al. . Spinal cord intradural arteriovenous fistulae: anatomic, clinical, and therapeutic considerations in a series of 32 consecutive patients seen between 1981 and 2000 with emphasis on endovascular therapy. Neurosurgery. 2005;57(5):973983.

    • Search Google Scholar
    • Export Citation
  • 14

    Thron AK. Vascular Anatomy of the Spinal Cord: Radioanatomy as the Key to Diagnosis and Treatment. Springer International Publishing; 2016.

    • Search Google Scholar
    • Export Citation
  • 15

    Lasjaunias PL, Berenstein A, terBrugge KG. Surgical Neuroangiography: 1 Functional Anatomy of Craniofacial Arteries. Springer; 2001.

  • 16

    Miyasaka K, Asano T, Ushikoshi S, et al. . Vascular anatomy of the spinal cord and classification of spinal arteriovenous malformations. Interv Neuroradiol. 2017;6(Suppl 1):195198.

    • Search Google Scholar
    • Export Citation
  • 17

    Matsumaru Y, Pongpech S, Laothamas J, et al. . Multifocal and metameric spinal cord arteriovenous malformations. Review of 19 cases. Interv Neuroradiol. 1999;5(1):2734.

    • Search Google Scholar
    • Export Citation
  • 18

    Namba K, Nemoto S. Parkes Weber syndrome and spinal arteriovenous malformations. AJNR Am J Neuroradiol. 2013;34(9):E110E112.

  • 19

    Alomari AI, Orbach DB, Mulliken JB, et al. . Klippel-Trenaunay syndrome and spinal arteriovenous malformations: an erroneous association. AJNR Am J Neuroradiol. 2010;31(9):16081612.

    • Search Google Scholar
    • Export Citation
  • 20

    Alomari AI, Chaudry G, Rodesch G, et al. . Complex spinal-paraspinal fast-flow lesions in CLOVES syndrome: analysis of clinical and imaging findings in 6 patients. AJNR Am J Neuroradiol. 2011;32(10):18121817.

    • Search Google Scholar
    • Export Citation
  • 21

    O’Rahilly R, Müller F, Carpenter S, Swenson R. The spinal cord and meninges. In: Basic Human Anatomy: A Regional Study of Human Structure. Saunders; 1983:566.

    • Search Google Scholar
    • Export Citation
  • 22

    Roccatagliata L, Kominami S, Krajina A, et al. . Spinal cord arteriovenous shunts of the ventral (anterior) sulcus: anatomical, clinical, and therapeutic considerations. Neuroradiology. 2017;59(3):289296.

    • Search Google Scholar
    • Export Citation
  • 23

    Gueguen B, Merland JJ, Riche MC, Rey A. Vascular malformations of the spinal cord: intrathecal perimedullary arteriovenous fistulas fed by medullary arteries. Neurology. 1987;37(6):969979.

    • Search Google Scholar
    • Export Citation
  • 24

    Barrow DL, Colohan ART, Dawson R. Intradural perimedullary arteriovenous fistulas (type IV spinal cord arteriovenous malformations). J Neurosurg. 1994;81(2):221229.

    • Search Google Scholar
    • Export Citation
  • 25

    Rodesch G, Hurth M, Tadie M, et al. . Intrinsic spinal cord arteriovenous malformations. Neuroradiol J. 2015;22(1 Suppl):115128.

  • 26

    Beneš V, Bradáč O. Brain Arteriovenous Malformations: Pathogenesis, Epidemiology, Diagnosis, Treatment and Outcome. Springer; 2017.

  • 27

    Valavanis A, Pangalu A, Tanaka M. Endovascular treatment of cerebral arteriovenous malformations with emphasis on the curative role of embolisation. Schweiz Arch Neurol Psychiatr. 2004;155(7):341347.

    • Search Google Scholar
    • Export Citation
  • 28

    Valavanis A. The role of angiography in the evaluation of cerebral vascular malformations. Neuroimaging Clin N Am. 1996;6(3):679704.

  • 29

    Velat GJ, Chang SW, Abla AA, et al. . Microsurgical management of glomus spinal arteriovenous malformations: pial resection technique: clinical article. J Neurosurg Spine. 2012;16(6):523531.

    • Search Google Scholar
    • Export Citation
  • 30

    Niimi Y, Uchiyama N, Elijovich L, Berenstein A. Spinal arteriovenous metameric syndrome: clinical manifestations and endovascular management. AJNR Am J Neuroradiol. 2013;34(2):457463.

    • Search Google Scholar
    • Export Citation
  • 31

    Mulliken JB, Young AE. Vascular Birthmarks: Hemangiomas and Malformations. Saunders; 1988.

  • 32

    Niimi Y, Ito U, Tone O, et al. . Multiple spinal perimedullary arteriovenous fistulae associated with the Parkes-Weber syndrome. A case report. Interv Neuroradiol. 1998;4(2):151157.

    • Search Google Scholar
    • Export Citation
  • 33

    Revencu N, Boon LM, Mulliken JB, et al. . Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29(7):959965.

    • Search Google Scholar
    • Export Citation
  • 34

    Kurek KC, Luks VL, Ayturk UM, et al. . Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90(6):11081115.

    • Search Google Scholar
    • Export Citation
  • 35

    Sapp JC, Turner JT, van de Kamp JM, et al. . Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A. 2007;143A(24):29442958.

    • Search Google Scholar
    • Export Citation
  • 36

    Revencu N, Boon LM, Mendola A, et al. . RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat. 2013;34(12):16321641.

    • Search Google Scholar
    • Export Citation
  • 37

    McAllister KA, Grogg KM, Johnson DW, et al. . Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8(4):345351.

    • Search Google Scholar
    • Export Citation
  • 38

    Johnson DW, Berg JN, Baldwin MA, et al. . Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13(2):189195.

    • Search Google Scholar
    • Export Citation
  • 39

    Gallione CJ, Repetto GM, Legius E, et al. . A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852859.

    • Search Google Scholar
    • Export Citation
  • 40

    Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS. Vascular morphogenesis: tales of two syndromes. Hum Mol Genet. 2003;12(Spec No 1):R97R112.

    • Search Google Scholar
    • Export Citation
  • 41

    Snellings DA, Gallione CJ, Clark DS, et al. . Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in bi-allelic loss of ENG or ACVRL1. Am J Hum Genet. 2019;105(5):894906.

    • Search Google Scholar
    • Export Citation
  • 42

    Krings T, Kin H, Power S, et al. . Neurovascular manifestations in hereditary hemorrhagic phenotype correlations. AJNR Am J Neuroradiol. 2015;36(5):863870.

    • Search Google Scholar
    • Export Citation
  • 43

    Krings T, Ozanne A, Chng SM, et al. . Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day-60 years. Neuroradiology. 2005;47(10):711720.

    • Search Google Scholar
    • Export Citation
  • 44

    Mahadevan J, Ozanne A, Yoshida Y, et al. . Hereditary haemorrhagic telangiectasia cerebrospinal localization in adults and children. Review of 39 cases. Interv Neuroradiol. 2004;10(1):2735.

    • Search Google Scholar
    • Export Citation
  • 45

    Puelles L. A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol. 1995;46(4-5):319337.

Metrics

All Time Past Year Past 30 Days
Abstract Views 116 116 116
Full Text Views 44 44 44
PDF Downloads 68 68 68
EPUB Downloads 0 0 0