Survival, fusion, and hardware failure after surgery for spinal metastatic disease

View More View Less
  • 1 Departments of Neurosurgery and
  • 3 Radiation Oncology, University of Michigan, Ann Arbor, Michigan; and
  • 2 Brain and Spine Specialists of North Texas, Arlington, Texas
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Decompression with instrumented fusion is commonly employed for spinal metastatic disease. Arthrodesis is typically sought despite limited knowledge of fusion outcomes, high procedural morbidity, and poor prognosis. This study aimed to describe survival, fusion, and hardware failure after decompression and fusion for spinal metastatic disease.

METHODS

The authors retrospectively examined a prospectively collected, single-institution database of adult patients undergoing decompression and instrumented fusion for spinal metastases. Patients were followed clinically until death or loss to follow-up. Fusion was assessed using CT when performed for oncological surveillance at 6-month intervals through 24 months postoperatively. Estimated cumulative incidences for fusion and hardware failure accounted for the competing risk of death. Potential risk factors were analyzed with univariate Fine and Gray proportional subdistribution hazard models.

RESULTS

One hundred sixty-four patients were identified. The mean age ± SD was 62.2 ± 10.8 years, 61.6% of patients were male, 98.8% received allograft and/or autograft, and 89.6% received postoperative radiotherapy. The Kaplan-Meier estimate of median survival was 11.0 months (IQR 3.5–37.8 months). The estimated cumulative incidences of any fusion and of complete fusion were 28.8% (95% CI 21.3%–36.7%) and 8.2% (95% CI 4.1%–13.9%). Of patients surviving 6 and 12 months, complete fusion was observed in 12.5% and 16.1%, respectively. The estimated cumulative incidence of hardware failure was 4.2% (95% CI 1.5–9.3%). Increasing age predicted hardware failure (HR 1.2, p = 0.003).

CONCLUSIONS

Low rates of complete fusion and hardware failure were observed due to the high competing risk of death. Further prospective, case-control studies incorporating nonfusion instrumentation techniques may be warranted.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Nicholas J. Szerlip: University of Michigan, Ann Arbor, MI. nszerlip@med.umich.edu.

INCLUDE WHEN CITING Published online January 29, 2021; DOI: 10.3171/2020.8.SPINE201166.

Disclosures Dr. Park: consultant for Globus and NuVasive, royalties from Globus, and support of non–study-related clinical or research effort from ISSG and DePuy. Dr. Spratt: consultant for AstraZeneca, Blue Early, and Janssen.

  • 1

    Lee CS , Jung CH . Metastatic spinal tumor. Asian Spine J. 2012;6(1):7187.

  • 2

    Patchell RA , Tibbs PA , Regine WF , Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643648.

    • Search Google Scholar
    • Export Citation
  • 3

    Vrionis FD , Small J . Surgical management of metastatic spinal neoplasms. Neurosurg Focus. 2003;15(5):E12.

  • 4

    Laufer I , Rubin DG , Lis E , The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744751.

    • Search Google Scholar
    • Export Citation
  • 5

    Al-Omair A , Masucci L , Masson-Cote L , Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro Oncol. 2013;15(10):14131419.

    • Search Google Scholar
    • Export Citation
  • 6

    Laufer I , Iorgulescu JB , Chapman T , Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207214.

    • Search Google Scholar
    • Export Citation
  • 7

    Kornblum MB , Fischgrund JS , Herkowitz HN , Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine (Phila Pa 1976). 2004;29(7):726734.

    • Search Google Scholar
    • Export Citation
  • 8

    Chun DS , Baker KC , Hsu WK . Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus. 2015;39(4):E10.

  • 9

    Ekman P , Möller H , Hedlund R . The long-term effect of posterolateral fusion in adult isthmic spondylolisthesis: a randomized controlled study. Spine J. 2005;5(1):3644.

    • Search Google Scholar
    • Export Citation
  • 10

    Andersen T , Videbaek TS , Hansen ES , The positive effect of posterolateral lumbar spinal fusion is preserved at long-term follow-up: a RCT with 11-13 year follow-up. Eur Spine J. 2008;17(2):272280.

    • Search Google Scholar
    • Export Citation
  • 11

    Kumar N , Patel R , Wadhwa AC , Basic concepts in metal work failure after metastatic spine tumour surgery. Eur Spine J. 2018;27(4):806814.

    • Search Google Scholar
    • Export Citation
  • 12

    Panjabi MM . Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976). 1988;13(10):11291134.

    • Search Google Scholar
    • Export Citation
  • 13

    Elder BD , Ishida W , Goodwin CR , Bone graft options for spinal fusion following resection of spinal column tumors: systematic review and meta-analysis. Neurosurg Focus. 2017;42(1):E16.

    • Search Google Scholar
    • Export Citation
  • 14

    Ravindra VM , Godzik J , Dailey AT , Vitamin D levels and 1-year fusion outcomes in elective spine surgery: a prospective observational study. Spine (Phila Pa 1976). 2015;40(19):15361541.

    • Search Google Scholar
    • Export Citation
  • 15

    Yahanda AT , Buchowski JM , Wegner AM . Treatment, complications, and outcomes of metastatic disease of the spine: from Patchell to PROMIS. Ann Transl Med. 2019;7(10):216.

    • Search Google Scholar
    • Export Citation
  • 16

    Georgiou KR , Scherer MA , Fan CM , Methotrexate chemotherapy reduces osteogenesis but increases adipogenic potential in the bone marrow. J Cell Physiol. 2012;227(3):909918.

    • Search Google Scholar
    • Export Citation
  • 17

    Kim TK , Cho W , Youn SM , Chang UK . The effect of perioperative radiation therapy on spinal bone fusion following spine tumor surgery. J Korean Neurosurg Soc. 2016;59(6):597603.

    • Search Google Scholar
    • Export Citation
  • 18

    Ibrahim A , Crockard A , Antonietti P , Does spinal surgery improve the quality of life for those with extradural (spinal) osseous metastases? An international multicenter prospective observational study of 223 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2007. J Neurosurg Spine. 2008;8(3):271278.

    • Search Google Scholar
    • Export Citation
  • 19

    Czigléczki G , Mezei T , Pollner P , Prognostic factors of surgical complications and overall survival of patients with metastatic spinal tumor. World Neurosurg. 2018;113:e20e28.

    • Search Google Scholar
    • Export Citation
  • 20

    Fehlings MG , Nater A , Tetreault L , Survival and clinical outcomes in surgically treated patients with metastatic epidural spinal cord compression: results of the prospective multicenter AOSpine study. J Clin Oncol. 2016;34(3):268276.

    • Search Google Scholar
    • Export Citation
  • 21

    Wibmer C , Leithner A , Hofmann G , Survival analysis of 254 patients after manifestation of spinal metastases: evaluation of seven preoperative scoring systems. Spine (Phila Pa 1976). 2011;36(23):19771986.

    • Search Google Scholar
    • Export Citation
  • 22

    Fang T , Dong J , Zhou X , Comparison of mini-open anterior corpectomy and posterior total en bloc spondylectomy for solitary metastases of the thoracolumbar spine. J Neurosurg Spine. 2012;17(4):271279.

    • Search Google Scholar
    • Export Citation
  • 23

    Harel R , Chao S , Krishnaney A , Spine instrumentation failure after spine tumor resection and radiation: comparing conventional radiotherapy with stereotactic radiosurgery outcomes. World Neurosurg. 2010;74(4-5):517522.

    • Search Google Scholar
    • Export Citation
  • 24

    Chuang HC , Wei ST , Lee HC , Preliminary experience of titanium mesh cages for pathological fracture of middle and lower cervical vertebrae. J Clin Neurosci. 2008;15(11):12101215.

    • Search Google Scholar
    • Export Citation
  • 25

    Heidecke V , Rainov NG , Burkert W . Results and outcome of neurosurgical treatment for extradural metastases in the cervical spine. Acta Neurochir (Wien). 2003;145(10):873881.

    • Search Google Scholar
    • Export Citation
  • 26

    Oda I , Abumi K , Ito M , Palliative spinal reconstruction using cervical pedicle screws for metastatic lesions of the spine: a retrospective analysis of 32 cases. Spine (Phila Pa 1976). 2006;31(13):14391444.

    • Search Google Scholar
    • Export Citation
  • 27

    Omeis I , Bekelis K , Gregory A , The use of expandable cages in patients undergoing multilevel corpectomies for metastatic tumors in the cervical spine. Orthopedics. 2010;33(2):8792.

    • Search Google Scholar
    • Export Citation
  • 28

    Dai LY , Jiang LS , Jiang SD . Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures. a five to seven-year prospective randomized study. J Bone Joint Surg Am. 2009;91(5):10331041.

    • Search Google Scholar
    • Export Citation
  • 29

    Ko SB , Lee SW . Result of posterior instrumentation without fusion in the management of thoracolumbar and lumbar unstable burst fracture. J Spinal Disord Tech. 2014;27(4):189195.

    • Search Google Scholar
    • Export Citation
  • 30

    Walker CT , Xu DS , Godzik J , Minimally invasive surgery for thoracolumbar spinal trauma. Ann Transl Med. 2018;6(6):102.

  • 31

    Yang H , Shi JH , Ebraheim M , Outcome of thoracolumbar burst fractures treated with indirect reduction and fixation without fusion. Eur Spine J. 2011;20(3):380386.

    • Search Google Scholar
    • Export Citation
  • 32

    Bellato RT , Teixeira WG , Torelli AG , Late failure of posterior fixation without bone fusion for vertebral metastases. Acta Ortop Bras. 2015;23(6):303306.

    • Search Google Scholar
    • Export Citation
  • 33

    Drakhshandeh D , Miller JA , Fabiano AJ . Instrumented spinal stabilization without fusion for spinal metastatic disease. World Neurosurg. 2018;111:e403e409.

    • Search Google Scholar
    • Export Citation
  • 34

    Park SJ , Lee KH , Lee CS , Instrumented surgical treatment for metastatic spinal tumors: is fusion necessary? J Neurosurg Spine. 2019;32(3):456464.

    • Search Google Scholar
    • Export Citation
  • 35

    Pedreira R , Abu-Bonsrah N , Karim Ahmed A , Hardware failure in patients with metastatic cancer to the spine. J Clin Neurosci. 2017;45:166171.

    • Search Google Scholar
    • Export Citation
  • 36

    Amankulor NM , Xu R , Iorgulescu JB , The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J. 2014;14(9):18501859.

    • Search Google Scholar
    • Export Citation
  • 37

    Longo M , De la Garza Ramos R , Gelfand Y , Incidence and predictors of hardware failure after instrumentation for spine metastasis: a single-institutional series. World Neurosurg. 2019;125:e1170e1175.

    • Search Google Scholar
    • Export Citation
  • 38

    Barzilai O , McLaughlin L , Lis E , Outcome analysis of surgery for symptomatic spinal metastases in long-term cancer survivors. J Neurosurg Spine. 2019;31(2):285290.

    • Search Google Scholar
    • Export Citation
  • 39

    Morgen SS , Lund-Andersen C , Larsen CF , Prognosis in patients with symptomatic metastatic spinal cord compression: survival in different cancer diagnosis in a cohort of 2321 patients. Spine (Phila Pa 1976). 2013;38(16):13621367.

    • Search Google Scholar
    • Export Citation
  • 40

    Dea N , Versteeg A , Fisher C , Adverse events in emergency oncological spine surgery: a prospective analysis. J Neurosurg Spine. 2014;21(5):698703.

    • Search Google Scholar
    • Export Citation
  • 41

    Quraishi NA , Rajabian A , Spencer A , Reoperation rates in the surgical treatment of spinal metastases. Spine J. 2015;15(3)(suppl):S37S43.

    • Search Google Scholar
    • Export Citation
  • 42

    Donovan DJ , Huynh TV , Purdom EB , Osteoradionecrosis of the cervical spine resulting from radiotherapy for primary head and neck malignancies: operative and nonoperative management. J Neurosurg Spine. 2005;3(2):159164.

    • Search Google Scholar
    • Export Citation
  • 43

    Mesfin A , Sciubba DM , Dea N , Changing the adverse event profile in metastatic spine surgery: an evidence-based approach to target wound complications and instrumentation failure. Spine (Phila Pa 1976). 2016;41(suppl 20):S262S270.

    • Search Google Scholar
    • Export Citation
  • 44

    Paulino Pereira NR , Ogink PT , Groot OQ , Complications and reoperations after surgery for 647 patients with spine metastatic disease. Spine J. 2019;19(1):144156.

    • Search Google Scholar
    • Export Citation
  • 45

    Garnero P , Hausherr E , Chapuy MC , Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11(10):15311538.

    • Search Google Scholar
    • Export Citation
  • 46

    Falahati-Nini A , Riggs BL , Atkinson EJ , Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):15531560.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 41 41 41
Full Text Views 49 49 49
PDF Downloads 40 40 40
EPUB Downloads 0 0 0