Clinical and radiological results of indirect decompression after anterior lumbar interbody fusion in central spinal canal stenosis

View More View Less
  • 1 Department of Neurosurgery, Spine Center, The Leon Wiltse Memorial Hospital; and
  • 2 Department of Cardiovascular Surgery, The Leon Wiltse Memorial Hospital, Suwon, Gyeonggi-do, South Korea
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Whereas the benefits of indirect decompression after lateral lumbar interbody fusion are well known, the effects of anterior lumbar interbody fusion (ALIF) have not yet been verified. The purpose of this study was to evaluate the clinical and radiological effects of indirect decompression after ALIF for central spinal canal stenosis. In this report, along with the many advantages of the anterior approach, the authors share cases with good outcomes that they have encountered.

METHODS

The authors performed a retrospective analysis of 64 consecutive patients who underwent ALIF for central spinal canal stenosis with instability and mixed foraminal stenosis between January 2015 and December 2018 at their hospital. Clinical assessments were performed using the visual analog scale score, the Oswestry Disability Index, and the modified Macnab criteria. The radiographic parameters were determined from pre- and postoperative cross-sectional MRI scans of the spinal canal and were compared to evaluate neural decompression after ALIF. The average follow-up period was 23.3 ± 1.3 months.

RESULTS

All clinical parameters, including the visual analog scale score, Oswestry Disability Index, and modified Macnab criteria, improved significantly. The mean operative duration was 254.8 ± 60.8 minutes, and the intraoperative bleeding volume was 179.8 ± 119.3 ml. In the radiological evaluation, radiological parameters of the cross-sections of the spinal canal showed substantial development. The spinal canal size improved by an average of 43.3% (p < 0.001) after surgery. No major complications occurred; however, aspiration guided by ultrasonography was performed in 2 patients because of a pseudocyst and fluid collection.

CONCLUSIONS

ALIF can serve as a suitable alternative to extensive posterior approaches. The authors suggest that ALIF can be used for decompression in central spinal canal stenosis as well as restoration of the foraminal dimensions, thus allowing decompression of the nerve roots.

ABBREVIATIONS ALIF = anterior lumbar interbody fusion; DSCSA = dural sac cross-sectional area; ODI = Oswestry Disability Index; VAS = visual analog scale.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Choon Keun Park: Spine Center, The Leon Wiltse Memorial Hospital, Gyeonggi-do, South Korea. allspine@wiltse.co.kr.

INCLUDE WHEN CITING Published online January 15, 2021; DOI: 10.3171/2020.7.SPINE191335.

D.H.L. and D.G.L. contributed equally to this work.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Mobbs RJ , Phan K , Malham G , Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):218.

    • Search Google Scholar
    • Export Citation
  • 2

    Teng I , Han J , Phan K , Mobbs R . A meta-analysis comparing ALIF, PLIF, TLIF and LLIF. J Clin Neurosci. 2017;44:1117.

  • 3

    Elowitz EH , Yanni DS , Chwajol M , Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54(5-6):201206.

    • Search Google Scholar
    • Export Citation
  • 4

    Fujibayashi S , Hynes RA , Otsuki B , Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976). 2015;40(3):E175E182.

    • Search Google Scholar
    • Export Citation
  • 5

    Janssen I , Lang G , Navarro-Ramirez R , Can fan-beam interactive computed tomography accurately predict indirect decompression in minimally invasive spine surgery fusion procedures? World Neurosurg. 2017;107:322333.

    • Search Google Scholar
    • Export Citation
  • 6

    Oliveira L , Marchi L , Coutinho E , Pimenta L . A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010;35(26 Suppl):S331S337.

    • Search Google Scholar
    • Export Citation
  • 7

    Sato J , Ohtori S , Orita S , Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. Eur Spine J. 2017;26(3):671678.

    • Search Google Scholar
    • Export Citation
  • 8

    Januszewski J , Beckman JM , Bach K , Indirect decompression and reduction of lumbar spondylolisthesis does not result in higher rates of immediate and long term complications. J Clin Neurosci. 2017;45:218222.

    • Search Google Scholar
    • Export Citation
  • 9

    Kapustka B , Kiwic G , Chodakowski P , Anterior lumbar interbody fusion (ALIF): biometrical results and own experiences. Neurosurg Rev. 2020;43(2):687693.

    • Search Google Scholar
    • Export Citation
  • 10

    Rao PJ , Maharaj MM , Phan K , Indirect foraminal decompression after anterior lumbar interbody fusion: a prospective radiographic study using a new pedicle-to-pedicle technique. Spine J. 2015;15(5):817824.

    • Search Google Scholar
    • Export Citation
  • 11

    Shin SH , Choi WG , Hwang BW , Microscopic anterior foraminal decompression combined with anterior lumbar interbody fusion. Spine J. 2013;13(10):11901199.

    • Search Google Scholar
    • Export Citation
  • 12

    Hayama S , Nakano A , Nakaya Y , The evaluation of indirect neural decompression after lateral lumbar interbody fusion using intraoperative computed tomography myelogram. World Neurosurg. 2018;120:e710e718.

    • Search Google Scholar
    • Export Citation
  • 13

    Schizas C , Theumann N , Burn A , Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976). 2010;35(21):19191924.

    • Search Google Scholar
    • Export Citation
  • 14

    Fleiss JL . Measuring nominal scale agreement among many raters. Psychol Bull. 1971;76(5):378382.

  • 15

    Zanoli G , Strömqvist B , Jönsson B . Visual analog scales for interpretation of back and leg pain intensity in patients operated for degenerative lumbar spine disorders. Spine (Phila Pa 1976). 2001;26(21):23752380.

    • Search Google Scholar
    • Export Citation
  • 16

    Fairbank JC , Pynsent PB . The Oswestry Disability Index. Spine (Phila Pa 1976). 2000;25(22):29402952.

  • 17

    Macnab I . Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J Bone Joint Surg Am. 1971;53(5):891903.

    • Search Google Scholar
    • Export Citation
  • 18

    Rao PJ , Loganathan A , Yeung V , Mobbs RJ . Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery. 2015;76(1):724.

    • Search Google Scholar
    • Export Citation
  • 19

    Hsieh PC , Koski TR , O’Shaughnessy BA , Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine. 2007;7(4):379386.

    • Search Google Scholar
    • Export Citation
  • 20

    Malham GM , Parker RM , Ellis NJ , Anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2: a prospective study of complications. J Neurosurg Spine. 2014;21(6):851860.

    • Search Google Scholar
    • Export Citation
  • 21

    Mobbs RJ , Phan K , Thayaparan GK , Rao PJ . Anterior lumbar interbody fusion as a salvage technique for pseudarthrosis following posterior lumbar fusion surgery. Global Spine J. 2016;6(1):1420.

    • Search Google Scholar
    • Export Citation
  • 22

    Phan K , Thayaparan GK , Mobbs RJ . Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion—systematic review and meta-analysis. Br J Neurosurg. 2015;29(5):705711.

    • Search Google Scholar
    • Export Citation
  • 23

    Yoshihara H . Indirect decompression in spinal surgery. J Clin Neurosci. 2017;44:6368.

  • 24

    Cho W , Sokolowski MJ , Mehbod AA , MRI measurement of neuroforaminal dimension at the index and supradjacent levels after anterior lumbar interbody fusion: a prospective study. Clin Orthop Surg. 2013;5(1):4954.

    • Search Google Scholar
    • Export Citation
  • 25

    Rao PJ , Ghent F , Phan K , Stand-alone anterior lumbar interbody fusion for treatment of degenerative spondylolisthesis. J Clin Neurosci. 2015;22(10):16191624.

    • Search Google Scholar
    • Export Citation
  • 26

    Gumbs AA , Bloom ND , Bitan FD , Hanan SH . Open anterior approaches for lumbar spine procedures. Am J Surg. 2007;194(1):98102.

    • Search Google Scholar
    • Export Citation
  • 27

    Shim JH , Kim WS , Kim JH , Comparison of instrumented posterolateral fusion versus percutaneous pedicle screw fixation combined with anterior lumbar interbody fusion in elderly patients with L5-S1 isthmic spondylolisthesis and foraminal stenosis. J Neurosurg Spine. 2011;15(3):311319.

    • Search Google Scholar
    • Export Citation
  • 28

    Strube P , Hoff E , Hartwig T , Stand-alone anterior versus anteroposterior lumbar interbody single-level fusion after a mean follow-up of 41 months. J Spinal Disord Tech. 2012;25(7):362369.

    • Search Google Scholar
    • Export Citation
  • 29

    Hrabalek L , Adamus M , Gryga A , A comparison of complication rate between anterior and lateral approaches to the lumbar spine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(1):127132.

    • Search Google Scholar
    • Export Citation
  • 30

    Laws CJ , Coughlin DG , Lotz JC , Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Spine (Phila Pa 1976). 2012;37(10):819825.

    • Search Google Scholar
    • Export Citation
  • 31

    Malham GM , Parker RM , Blecher CM , Choice of approach does not affect clinical and radiologic outcomes: a comparative cohort of patients having anterior lumbar interbody fusion and patients having lateral lumbar interbody fusion at 24 months. Global Spine J. 2016;6(5):472481.

    • Search Google Scholar
    • Export Citation
  • 32

    Watkins RG IV , Hanna R , Chang D , Watkins RG III . Sagittal alignment after lumbar interbody fusion: comparing anterior, lateral, and transforaminal approaches. J Spinal Disord Tech. 2014;27(5):253256.

    • Search Google Scholar
    • Export Citation
  • 33

    Malham GM , Parker RM , Goss B , Indirect foraminal decompression is independent of metabolically active facet arthropathy in extreme lateral interbody fusion. Spine (Phila Pa 1976). 2014;39(22):E1303E1310.

    • Search Google Scholar
    • Export Citation
  • 34

    Ohtori S , Orita S , Yamauchi K , Change of lumbar ligamentum flavum after indirect decompression using anterior lumbar interbody fusion. Asian Spine J. 2017;11(1):105112.

    • Search Google Scholar
    • Export Citation
  • 35

    Lim YS , Mun JU , Seo MS , Dural sac area is a more sensitive parameter for evaluating lumbar spinal stenosis than spinal canal area: a retrospective study. Medicine (Baltimore). 2017;96(49):e9087.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 170 170 170
Full Text Views 79 79 79
PDF Downloads 42 42 42
EPUB Downloads 0 0 0