The impact of platelet-rich plasma on postoperative outcomes after spinal fusion: a systematic review and meta-analysis

View More View Less
  • 1 Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester;
  • 2 Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;
  • 3 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida; and
  • 4 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Platelet-rich plasma (PRP) is a biological agent obtained by centrifuging a sample of blood and retrieving a high concentration of platelets and plasma components. The concentrate is then stimulated for platelet secretion of various growth factors and cytokines. Although it is not widely used in clinical practice, its role in augmenting bony union among patients undergoing spinal fusion has been assessed in several clinical studies. The objective of this study was to perform a systematic review and meta-analysis of the existing literature to determine the efficacy of PRP use in spinal fusion procedures.

METHODS

A comprehensive literature search was conducted using PubMed, Scopus, and EMBASE for studies from all available dates. From eligible studies, data regarding the fusion rate and method of assessing fusion, estimated blood loss (EBL), and baseline and final visual analog scale (VAS) scores were collected as the primary outcomes of interest. Patients were grouped by those undergoing spinal fusion with PRP and bone graft (PRP group) and those only with bone graft (graft-only group).

RESULTS

The literature search resulted in 207 articles. Forty-five full-text articles were screened, of which 11 studies were included, resulting in a meta-analysis including 741 patients. Patients without PRP were more likely to have a successful fusion at the last follow-up compared with those with PRP in their bone grafts (OR 0.53, 95% CI 0.34–0.84; p = 0.006). There was no statistically significant difference with regard to change in VAS scores (OR 0.00, 95% CI −2.84 to 2.84; p > 0.99) or change in EBL (OR 3.67, 95% CI −67.13–74.48; p = 0.92) between the groups.

CONCLUSIONS

This study found that the additional use of PRP was not associated with any significant improvement in patient-reported outcomes and was actually found to be associated with lower fusion rates compared with standard grafting techniques. Thus, PRP may have a limited role in augmenting spinal fusion.

ABBREVIATIONS EBL = estimated blood loss; GRADE = Grading of Recommendations Assessment, Development and Evaluation; MD = mean difference; NOS = Newcastle-Ottawa Scale; PRP = platelet-rich plasma; RCT = randomized controlled trial; VAS = visual analog scale.

Supplementary Materials

    • Supplemental Figs. 1–4 (PDF 443 KB)

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Mohamad Bydon: Mayo Clinic, Rochester, MN. bydon.mohamad@mayo.edu.

INCLUDE WHEN CITING Published online May 22, 2020; DOI: 10.3171/2020.3.SPINE2046.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Nguyen RT, Borg-Stein J, McInnis K. Applications of platelet-rich plasma in musculoskeletal and sports medicine: an evidence-based approach. PM R. 2011;3(3):226250.

    • Search Google Scholar
    • Export Citation
  • 2

    Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33(5):381394.

  • 3

    Podd D. Platelet-rich plasma therapy: origins and applications investigated. JAAPA. 2012;25(6):4449.

  • 4

    Akbulut S, Yagci A, Yay AH, Yalcin B. Experimental investigation of effects of platelet-rich plasma on early phases of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2019;155(1):7179.

    • Search Google Scholar
    • Export Citation
  • 5

    Elghblawi E. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering. J Cosmet Dermatol. 2018;17(3):423430.

    • Search Google Scholar
    • Export Citation
  • 6

    Wu Y-T, Hsu K-C, Li T-Y, Effects of platelet-rich plasma on pain and muscle strength in patients with knee osteoarthritis. Am J Phys Med Rehabil. 2018;97(4):248254.

    • Search Google Scholar
    • Export Citation
  • 7

    Mahindra P, Yamin M, Selhi HS, Chronic plantar fasciitis: effect of platelet-rich plasma, corticosteroid, and placebo. Orthopedics. 2016;39(2):e285e289.

    • Search Google Scholar
    • Export Citation
  • 8

    Levi D, Horn S, Tyszko S, Intradiscal platelet-rich plasma injection for chronic discogenic low back pain: preliminary results from a prospective trial. Pain Med. 2016;17(6):10101022.

    • Search Google Scholar
    • Export Citation
  • 9

    Monfett M, Harrison J, Boachie-Adjei K, Lutz G. Intradiscal platelet-rich plasma (PRP) injections for discogenic low back pain: an update. Int Orthop. 2016;40(6):13211328.

    • Search Google Scholar
    • Export Citation
  • 10

    Lana J, Santana MHA, Belangero WD, Luzo A. Platelet-Rich Plasma. Regenerative Medicine: Sports Medicine, Orthopedic, and Recovery of Musculoskeletal Injuries. Springer; 2014.

    • Search Google Scholar
    • Export Citation
  • 11

    Shamseer L, Moher D, Clarke M, Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.

    • Search Google Scholar
    • Export Citation
  • 12

    Wells GA, Shea B, O’Connell D, The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed April 2, 2020. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

    • Export Citation
  • 13

    Higgins JPT, Altman DG, Gøtzsche PC, The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    • Search Google Scholar
    • Export Citation
  • 14

    Atkins D, Best D, Briss PA, Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.

  • 15

    Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557560.

  • 16

    Carreon LY, Glassman SD, Anekstein Y, Puno RM. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine (Phila Pa 1976). 2005;30(9):E243E247.

    • Search Google Scholar
    • Export Citation
  • 17

    Kubota G, Kamoda H, Orita S, Efficacy of platelet-rich plasma for bone fusion in transforaminal lumbar interbody fusion. Asian Spine J. 2018;12(1):112118.

    • Search Google Scholar
    • Export Citation
  • 18

    Weiner BK, Walker M. Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine (Phila Pa 1976). 2003;28(17):19681971.

    • Search Google Scholar
    • Export Citation
  • 19

    Acebal-Cortina G, Suárez-Suárez MA, García-Menéndez C, Evaluation of autologous platelet concentrate for intertransverse lumbar fusion. Eur Spine J. 2011;20(suppl 3):361366.

    • Search Google Scholar
    • Export Citation
  • 20

    Hartmann EK, Heintel T, Morrison RH, Weckbach A. Influence of platelet-rich plasma on the anterior fusion in spinal injuries: a qualitative and quantitative analysis using computer tomography. Arch Orthop Trauma Surg. 2010;130(7):909914.

    • Search Google Scholar
    • Export Citation
  • 21

    Hee HT, Majd ME, Holt RT, Myers L. Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur Spine J. 2003;12(4):400407.

    • Search Google Scholar
    • Export Citation
  • 22

    Jenis LG, Banco RJ, Kwon B. A prospective study of Autologous Growth Factors (AGF) in lumbar interbody fusion. Spine J. 2006;6(1):1420.

    • Search Google Scholar
    • Export Citation
  • 23

    Tsai C-H, Hsu H-C, Chen Y-J, Using the growth factors-enriched platelet glue in spinal fusion and its efficiency. J Spinal Disord Tech. 2009;22(4):246250.

    • Search Google Scholar
    • Export Citation
  • 24

    Buser Z, Brodke DS, Youssef JA, Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;25(4):509516.

    • Search Google Scholar
    • Export Citation
  • 25

    Kubota G, Kamoda H, Orita S, Platelet-rich plasma enhances bone union in posterolateral lumbar fusion: a prospective randomized controlled trial. Spine J. 2019;19(2):e34e40.

    • Search Google Scholar
    • Export Citation
  • 26

    Rezende CF, Azevedo DP, Lourenço RB, Evaluation of the effectiveness of platelet-rich plasma in the bone consolidation of patients submitted to lumbar arthrodesis. Rev Bras Ortop. 2017;52(6):693698.

    • Search Google Scholar
    • Export Citation
  • 27

    Sys J, Weyler J, Van Der Zijden T, Platelet-rich plasma in mono-segmental posterior lumbar interbody fusion. Eur Spine J. 2011;20(10):16501657.

    • Search Google Scholar
    • Export Citation
  • 28

    Huang D-G, Zhang X-L, Hao D-J, Posterior atlantoaxial fusion with a screw-rod system: allograft versus iliac crest autograft. Clin Neurol Neurosurg. 2017;162:95100.

    • Search Google Scholar
    • Export Citation
  • 29

    Yson SC, Sembrano JN, Santos ERG. Comparison of allograft and polyetheretherketone (PEEK) cage subsidence rates in anterior cervical discectomy and fusion (ACDF). J Clin Neurosci. 2017;38:118121.

    • Search Google Scholar
    • Export Citation
  • 30

    Tuchman A, Brodke DS, Youssef JA, Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review. Global Spine J. 2016;6(6):592606.

    • Search Google Scholar
    • Export Citation
  • 31

    Ito Z, Imagama S, Kanemura T, Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J. 2013;22(5):11581163.

    • Search Google Scholar
    • Export Citation
  • 32

    Sengupta DK, Truumees E, Patel CK, Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine (Phila Pa 1976). 2006;31(9):985991.

    • Search Google Scholar
    • Export Citation
  • 33

    Keller EE, Triplett WW. Iliac bone grafting: review of 160 consecutive cases. J Oral Maxillofac Surg. 1987;45(1):1114.

  • 34

    Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71(4):677680.

    • Search Google Scholar
    • Export Citation
  • 35

    Elder BD, Holmes C, Goodwin CR, A systematic assessment of the use of platelet-rich plasma in spinal fusion. Ann Biomed Eng. 2015;43(5):10571070.

    • Search Google Scholar
    • Export Citation
  • 36

    Landi A, Tarantino R, Marotta N, The use of platelet gel in postero-lateral fusion: preliminary results in a series of 14 cases. Eur Spine J. 2011;20(1)(suppl 1):S61S67.

    • Search Google Scholar
    • Export Citation
  • 37

    Castro FPJ Jr. Role of activated growth factors in lumbar spinal fusions. J Spinal Disord Tech. 2004;17(5):380384.

  • 38

    Hayashi T, Lord EL, Suzuki A, A comparison of commercially available demineralized bone matrices with and without human mesenchymal stem cells in a rodent spinal fusion model. J Neurosurg Spine. 2016;25(1):133137.

    • Search Google Scholar
    • Export Citation
  • 39

    Liu Z, Zhu Y, Zhu H, Enhancement of posterolateral lumbar spine fusion using recombinant human bone morphogenetic protein-2 and mesenchymal stem cells delivered in fibrin glue. J Biomater Appl. 2016;31(4):477487.

    • Search Google Scholar
    • Export Citation
  • 40

    Eastlack RK, Garfin SR, Brown CR, Meyer SC. Osteocel Plus cellular allograft in anterior cervical discectomy and fusion: evaluation of clinical and radiographic outcomes from a prospective multicenter study. Spine (Phila Pa 1976). 2014;39(22):E1331E1337.

    • Search Google Scholar
    • Export Citation
  • 41

    Tohmeh AG, Watson B, Tohmeh M, Zielinski XJ. Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. ScientificWorldJournal. 2012;2012:263637.

    • Search Google Scholar
    • Export Citation
  • 42

    Molinari RW, Bridwell KH, Klepps SJ, Baldus C. Minimum 5-year follow-up of anterior column structural allografts in the thoracic and lumbar spine. Spine (Phila Pa 1976). 1999;24(10):967972.

    • Search Google Scholar
    • Export Citation
  • 43

    Glassman SD, Dimar JR, Carreon LY, Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine (Phila Pa 1976). 2005;30(15):16941698.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 75 75 75
Full Text Views 50 50 50
PDF Downloads 28 28 28
EPUB Downloads 0 0 0