Reduced field of view echo-planar imaging diffusion tensor MRI for pediatric spinal tumors

Restricted access

OBJECTIVE

Spine MRI is a diagnostic modality for evaluating pediatric CNS tumors. Applying diffusion-weighted MRI (DWI) or diffusion tensor imaging (DTI) to the spine poses challenges due to intrinsic spinal anatomy that exacerbates various image-related artifacts, such as signal dropouts or pileups, geometrical distortions, and incomplete fat suppression. The zonal oblique multislice (ZOOM)–echo-planar imaging (EPI) technique reduces geometric distortion and image blurring by reducing the field of view (FOV) without signal aliasing into the FOV. The authors hypothesized that the ZOOM-EPI method for spine DTI in concert with conventional spinal MRI is an efficient method for augmenting the evaluation of pediatric spinal tumors.

METHODS

Thirty-eight consecutive patients (mean age 8 years) who underwent ZOOM-EPI spine DTI for CNS tumor workup were retrospectively identified. Patients underwent conventional spine MRI and ZOOM-EPI DTI spine MRI. Two blinded radiologists independently reviewed two sets of randomized images: conventional spine MRI without ZOOM-EPI DTI, and conventional spine MRI with ZOOM-EPI DTI. For both image sets, the reviewers scored the findings based on lesion conspicuity and diagnostic confidence using a 5-point Likert scale. The reviewers also recorded presence of tumors. Quantitative apparent diffusion coefficient (ADC) measurements of various spinal tumors were extracted. Tractography was performed in a subset of patients undergoing presurgical evaluation.

RESULTS

Sixteen patients demonstrated spinal tumor lesions. The readers were in moderate agreement (kappa = 0.61, 95% CI 0.30–0.91). The mean scores for conventional MRI and combined conventional MRI and DTI were as follows, respectively: 3.0 and 4.0 for lesion conspicuity (p = 0.0039), and 2.8 and 3.9 for diagnostic confidence (p < 0.001). ZOOM-EPI DTI identified new lesions in 3 patients. In 3 patients, tractography used for neurosurgical planning showed characteristic fiber tract projections. The mean weighted ADCs of low- and high-grade tumors were 1201 × 10−6 and 865 × 10−6 mm2/sec (p = 0.002), respectively; the mean minimum weighted ADCs were 823 × 10−6 and 474 × 10−6 mm2/sec (p = 0.0003), respectively.

CONCLUSIONS

Diffusion MRI with ZOOM-EPI can improve the detection of spinal lesions while providing quantitative diffusion information that helps distinguish low- from high-grade tumors. By adding a 2-minute DTI scan, quantitative diffusion information and tract profiles can reliably be obtained and serve as a useful adjunct to presurgical planning for pediatric spinal tumors.

ABBREVIATIONS ADC = apparent diffusion coefficient; DTI = diffusion tensor imaging; DWI = diffusion-weighted imaging; EPI = echo-planar imaging; FA = fractional anisotropy; FOV = field of view; ROI = region of interest; ZOOM = zonal oblique multislice.
Article Information

Contributor Notes

Correspondence Kristen W. Yeom: Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA. kyeom@stanford.edu.INCLUDE WHEN CITING Published online July 5, 2019; DOI: 10.3171/2019.4.SPINE19178.Disclosures Dr. Aksoy: direct stock ownership in HobbitView, Inc., and consultant for Ischemaview, Inc.

© AANS, except where prohibited by US copyright law.

Headings
References
  • 1

    Abul-Kasim KThurnher MMMcKeever PSundgren PC: Intradural spinal tumors: current classification and MRI features. Neuroradiology 50:3013142008

  • 2

    Alizadeh MPoplawski MMFisher JGorniak RJTDresner AMohamed FB: Zonally magnified oblique multislice and non-zonally magnified oblique multislice DWI of the cervical spinal cord. AJNR Am J Neuroradiol 39:155515612018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Andre JBBammer R: Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord. Top Magn Reson Imaging 21:3673782010

  • 4

    Atkinson DPorter DAHill DLCalamante FConnelly A: Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 44:1011092000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Bammer RFazekas F: Diffusion imaging of the human spinal cord and the vertebral column. Top Magn Reson Imaging 14:4614762003

  • 6

    Barakat NMohamed FBHunter LNShah PFaro SHSamdani AF: Diffusion tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging sequence. AJNR Am J Neuroradiol 33:112711332012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Byun WMShin SOChang YLee SJFinsterbusch JFrahm J: Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 23:9069122002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Choudhri AFWhitehead MTKlimo P JrMontgomery BKBoop FA: Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology 56:1691742014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Constantini SMiller DCAllen JCRorke LBFreed DEpstein FJ: Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg 93 (2 Suppl):1831932000

    • Search Google Scholar
    • Export Citation
  • 10

    Dowell NGJenkins TMCiccarelli OMiller DHWheeler-Kingshott CA: Contiguous-slice zonally oblique multislice (CO-ZOOM) diffusion tensor imaging: examples of in vivo spinal cord and optic nerve applications. J Magn Reson Imaging 29:4544602009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Fehlings MGMercier D: Factors predicting the resectability of intramedullary spinal cord tumors and the progression-free survival following microsurgical treatment. J Neurosurg Spine 11:5885902009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Gilard VGoia AFerracci FXMarguet FMagne NLanglois O: Spinal meningioma and factors predictive of post-operative deterioration. J Neurooncol 140:49542018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Grussu FSchneider TZhang HAlexander DCWheeler-Kingshott CA: Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. Neuroimage 111:5906012015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Huisman TA: Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 10 (Spec No A):S163S1712010

  • 15

    Huisman TA: Pediatric tumors of the spine. Cancer Imaging 9 (Spec No A):S45S482009

  • 16

    Jeong EKKim SEGuo JKholmovski EGParker DL: High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI). Magn Reson Med 54:157515792005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Leemans AJones DK: The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61:133613492009

  • 18

    Maesawa SFujii MNakahara NWatanabe TWakabayashi TYoshida J: Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg 74:1531612010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Mansfield POrdidge RJCoxon R: Zonally magnified EPI in real time by NMR. J Phys E Sci Instrum 21:2752801988

  • 20

    Mascalchi MFilippi MFloris RFonda CGasparotti RVillari N: Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med (Torino) 109:1551972005

    • Search Google Scholar
    • Export Citation
  • 21

    Messiou CCollins DJGiles Sde Bono JSBianchini Dde Souza NM: Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol 21:216921772011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Pujol SWells WPierpaoli CBrun CGee JCheng G: The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25:8758822015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Rickert CHPaulus W: Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 17:5035112001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Salmenpera TMSimister RJBartlett PSymms MRBoulby PAFree SL: High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 71:1021062006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Samartzis DGillis CCShih PO’Toole JEFessler RG: Intramedullary spinal cord tumors: part I—epidemiology, pathophysiology, and diagnosis. Global Spine J 5:4254352015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Samuel NTetreault LSantaguida CNater AMoayeri NMassicotte EM: Clinical and pathological outcomes after resection of intramedullary spinal cord tumors: a single-institution case series. Neurosurg Focus 41(2):E82016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Saritas EUCunningham CHLee JHHan ETNishimura DG: DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med 60:4684732008

  • 28

    Sąsiadek MJSzewczyk PBladowska J: Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit 18:RA73RA792012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Setzer MMurtagh RDMurtagh FREleraky MJain SMarquardt G: Diffusion tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability. J Neurosurg Spine 13:3713802010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Shibahara ISaito ROsada YKanamori MSonoda YKumabe T: Incidence of initial spinal metastasis in glioblastoma patients and the importance of spinal screening using MRI. J Neurooncol 141:3373452019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Sofuoğlu OEAbdallah A: Pediatric spinal ependymomas. Med Sci Monit 24:707270892018

  • 32

    Summers PStaempfli PJaermann TKwiecinski SKollias S: A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. AJNR Am J Neuroradiol 27:1952–19612006

    • Search Google Scholar
    • Export Citation
  • 33

    Symms MWheeler-Kingshott CParker GBarker G: Zonally-magnified oblique multislice (ZOOM) EPI in Proceedings of the 8th Meeting of the International Society for Magnetic Resonance in Medicine. Concord, CA: ISMRM2000 p 160

    • Search Google Scholar
    • Export Citation
  • 34

    Sze GBravo SBaierl PShimkin PM: Developing spinal column: gadolinium-enhanced MR imaging. Radiology 180:4975021991

  • 35

    Tartaglino LMFlanders AEVinitski SFriedman DP: Metallic artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques. Radiology 190:5655691994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Vargas MIDelavelle JJlassi HRilliet BViallon MBecker CD: Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 50:25292008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Wheeler-Kingshott CAHickman SJParker GJCiccarelli OSymms MRMiller DH: Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16:931022002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Wheeler-Kingshott CAParker GJSymms MRHickman SJTofts PSMiller DH: ADC mapping of the human optic nerve: increased resolution, coverage, and reliability with CSF-suppressed ZOOM-EPI. Magn Reson Med 47:24312002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Wheeler-Kingshott CATrip SASymms MRParker GJBarker GJMiller DH: In vivo diffusion tensor imaging of the human optic nerve: pilot study in normal controls. Magn Reson Med 56:4464512006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Wilm BJSvensson JHenning APruessmann KPBoesiger PKollias SS: Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 57:6256302007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Xu DMori SSolaiyappan Mvan Zijl PCDavatzikos C: A framework for callosal fiber distribution analysis. Neuroimage 17:113111432002

  • 42

    Xue YHauskrecht M: Active learning of classification models with Likert-scale feedback. Proc SIAM Int Conf Data Min 2017:28352017

  • 43

    Yeom KWHoldsworth SJVan ATIv MSkare SLober RM: Comparison of readout-segmented echo-planar imaging (EPI) and single-shot EPI in clinical application of diffusion-weighted imaging of the pediatric brain. AJR Am J Roentgenol 200:W437432013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Zhang L: Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations. J Inequal Appl 2017:2492017

    • Search Google Scholar
    • Export Citation
  • 45

    Zhang YDZhu FPXu XWang QWu CJLiu XS: Classifying CT/MR findings in patients with suspicion of hepatocellular carcinoma: comparison of liver imaging reporting and data system and criteria-free Likert scale reporting models. J Magn Reson Imaging 43:3733832016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 48 48 48
Full Text Views 13 13 13
PDF Downloads 25 25 25
EPUB Downloads 0 0 0
PubMed
Google Scholar