Reconstitution of degenerated ovine lumbar discs by STRO-3–positive allogeneic mesenchymal precursor cells combined with pentosan polysulfate

David Oehme The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;

Search for other papers by David Oehme in
jns
Google Scholar
PubMed
Close
 MBBS, PhD
,
Peter Ghosh The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;
Proteobioactives, Pty Ltd, Brookvale, New South Wales;
Mesoblast Ltd, Melbourne;

Search for other papers by Peter Ghosh in
jns
Google Scholar
PubMed
Close
 DSc, PhD, FRSC
,
Tony Goldschlager The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;
Mesoblast Ltd, Melbourne;

Search for other papers by Tony Goldschlager in
jns
Google Scholar
PubMed
Close
 MBBS, PhD, FRACS
,
Silviu Itescu Mesoblast Ltd, Melbourne;

Search for other papers by Silviu Itescu in
jns
Google Scholar
PubMed
Close
 MD, PhD
,
Susan Shimon Proteobioactives, Pty Ltd, Brookvale, New South Wales;

Search for other papers by Susan Shimon in
jns
Google Scholar
PubMed
Close
 BSc
,
Jiehua Wu Proteobioactives, Pty Ltd, Brookvale, New South Wales;

Search for other papers by Jiehua Wu in
jns
Google Scholar
PubMed
Close
 PhD, MSc
,
Courtney McDonald The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;

Search for other papers by Courtney McDonald in
jns
Google Scholar
PubMed
Close
 BSc, PhD
,
John M. Troupis Diagnostic Imaging, Monash Health;

Search for other papers by John M. Troupis in
jns
Google Scholar
PubMed
Close
 MBBS, FRANZCR
,
Jeffrey V. Rosenfeld Department of Surgery, Monash University, Clayton; and
Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia

Search for other papers by Jeffrey V. Rosenfeld in
jns
Google Scholar
PubMed
Close
 MD, MS, FRACS
, and
Graham Jenkin The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;

Search for other papers by Graham Jenkin in
jns
Google Scholar
PubMed
Close
 PhD
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Disc degeneration and associated low-back pain are major causes of suffering and disability. The authors examined the potential of mesenchymal precursor cells (MPCs), when formulated with pentosan polysulfate (PPS), to ameliorate disc degeneration in an ovine model.

METHODS

Twenty-four sheep had annular incisions made at L2–3, L3–4, and L4–5 to induce degeneration. Twelve weeks after injury, the nucleus pulposus of a degenerated disc in each animal was injected with ProFreeze and PPS formulated with either a low dose (0.1 million MPCs) or a high dose (0.5 million MPCs) of cells. The 2 adjacent injured discs in each spine were either injected with PPS and ProFreeze (PPS control) or not injected (nil-injected control). The adjacent noninjured L1–2 and L5–6 discs served as noninjured control discs. Disc height indices (DHIs) were obtained at baseline, before injection, and at planned death. After necropsy, 24 weeks after injection, the spines were subjected to MRI and morphological, histological, and biochemical analyses.

RESULTS

Twelve weeks after the annular injury, all the injured discs exhibited a significant reduction in mean DHI (low-dose group 17.19%; high-dose group 18.01% [p < 0.01]). Twenty-four weeks after injections, the discs injected with the low-dose MPC+PPS formulation recovered disc height, and their mean DHI was significantly greater than the DHI of PPS- and nil-injected discs (p < 0.001). Although the mean Pfirrmann MRI disc degeneration score for the low-dose MPC+PPS–injected discs was lower than that for the nil- and PPS-injected discs, the differences were not significant. The disc morphology scores for the nil- and PPS-injected discs were significantly higher than the normal control disc scores (p < 0.005), whereas the low-dose MPC+PPS–injected disc scores were not significantly different from those of the normal controls. The mean glycosaminoglycan content of the nuclei pulposus of the low-dose MPC+PPS–injected discs was significantly higher than that of the PPS-injected controls (p < 0.05) but was not significantly different from the normal control disc glycosaminoglycan levels. Histopathology degeneration frequency scores for the low-dose MPC+PPS–injected discs were lower than those for the PPS- and Nil-injected discs. The corresponding high-dose MPC+PPS–injected discs failed to show significant improvements in any outcome measure relative to the controls.

CONCLUSIONS

Intradiscal injections of a formulation composed of 0.1 million MPCs combined with PPS resulted in positive effects in reducing the progression of disc degeneration in an ovine model, as assessed by improvements in DHI and morphological, biochemical, and histopathological scores.

ABBREVIATIONS

AF = annulus fibrosus; cABC = chondroitinase ABC; DHI = disc height index; GAG = glycosaminoglycan; HA = hyaluronic acid; MPC = mesenchymal precursor cell; MSC = mesenchymal stem cell; NP = nucleus pulposus; PG = proteoglycan; PPS = pentosan polysulfate.
  • Collapse
  • Expand
  • 1

    Acosta FL Jr, , Metz L, , Adkisson HD, , Liu J, , Carruthers-Liebenberg E, & Milliman C, et al.: Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A 17:30453055, 2011

    • Search Google Scholar
    • Export Citation
  • 2

    Allon AA, , Aurouer N, , Yoo BB, , Liebenberg EC, , Buser Z, & Lotz JC: Structured coculture of stem cells and disc cells prevent disc degeneration in a rat model. Spine J 10:10891097, 2010

    • Search Google Scholar
    • Export Citation
  • 3

    Bergknut N, , Meij BP, , Hagman R, , de Nies KS, , Rutges JP, & Smolders LA, et al.: Intervertebral disc disease in dogs—part 1: a new histological grading scheme for classification of intervertebral disc degeneration in dogs. Vet J 195:156163, 2013

    • Search Google Scholar
    • Export Citation
  • 4

    Berthoux FC, , Freyria AM, & Traeger J: [Anticomplement activity of a polyanion: pentosan sulfuric polyester. III. Mechanism of functional inactivation of the different properdin and complement system fractions.]. Pathol Biol (Paris) 25:179184, 1977. (Fr)

    • Search Google Scholar
    • Export Citation
  • 5

    Berthoux FC, , Freyria AM, , Zech PY, & Traeger J: [Anticomplementary activity of a polyanion: polyanion: pentosan-poly-sulfoester. I. “In vitro” study and “in vivo” trial in human glomerulonephritis (author's transl).]. Pathol Biol (Paris) 25:3336, 1977. (Fr)

    • Search Google Scholar
    • Export Citation
  • 6

    Berthoux FC, , Freyria AM, & Traeger J: [Anticomplementary activity of a polyanion: pentosan-poly-sulfoester, II. Mode of action and “in vitro ” inhibition of human complement hemolytic activity (author's transl).]. Pathol Biol (Paris) 25:105108, 1977. (Fr)

    • Search Google Scholar
    • Export Citation
  • 7

    Bertram H, , Kroeber M, , Wang H, , Unglaub F, , Guehring T, & Carstens C, et al.: Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem Biophys Res Commun 331:11851192, 2005

    • Search Google Scholar
    • Export Citation
  • 8

    Burkhardt D, , Hwa SY, & Ghosh P: A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections: its application to determine the effects of Diacerhein on cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 9:238247, 2001

    • Search Google Scholar
    • Export Citation
  • 9

    Dennis J, & Caplan A, Bone marrow mesenchymal stem cells. Sell S: Stem Cell Handbook Albany NY, Humana Press, 2003. 108

  • 10

    Dvorakova J, , Velebny V, & Kubala L: Hyaluronan influence on the onset of chondrogenic differentiation of mesenchymal stem cells. Neuroendocrinol Lett 29:685690, 2008

    • Search Google Scholar
    • Export Citation
  • 11

    Farndale RW, , Buttle DJ, & Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173177, 1986

    • Search Google Scholar
    • Export Citation
  • 12

    Fazzalari NL, , Costi JJ, , Hearn TC, , Fraser RD, , Vernon-Roberts B, & Hutchinson J, et al.: Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine (Phila Pa 1976) 26:25752581, 2001

    • Search Google Scholar
    • Export Citation
  • 13

    Feng G, , Zhao X, , Liu H, , Zhang H, , Chen X, & Shi R, et al.: Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits: a comparison of 2 cell types as potential candidates for disc regeneration. J Neurosurg Spine 14:322329, 2011

    • Search Google Scholar
    • Export Citation
  • 14

    Ganey T, , Hutton WC, , Moseley T, , Hedrick M, & Meisel HJ: Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila Pa 1976) 34:22972304, 2009

    • Search Google Scholar
    • Export Citation
  • 15

    Ganey T, , Libera J, , Moos V, , Alasevic O, , Fritsch KG, & Meisel HJ, et al.: Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine (Phila Pa 1976) 28:26092620, 2003

    • Search Google Scholar
    • Export Citation
  • 16

    Ghosh P: Disc structure and function. Biology of the Intervertebral Disc Boca Raton, FL, CRC Press, 1988. 1:

  • 17

    Ghosh P: The pathobiology of osteoarthritis and the rationale for the use of pentosan polysulfate for its treatment. Semin Arthritis Rheum 28:211267, 1999

    • Search Google Scholar
    • Export Citation
  • 18

    Ghosh P, , Moore R, , Vernon-Roberts B, , Goldschlager T, , Pascoe D, & Zannettino A, et al.: Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs. J Neurosurg Spine 16:479488, 2012

    • Search Google Scholar
    • Export Citation
  • 19

    Ghosh P, , Wu J, , Shimmon S, , Zannettino AC, , Gronthos S, & Itescu S: Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells. Arthritis Res Ther 12:R28, 2010

    • Search Google Scholar
    • Export Citation
  • 20

    Goldschlager T, , Ghosh P, , Zannettino A, , Gronthos S, , Rosenfeld JV, & Itescu S, et al.: Cervical motion preservation using mesenchymal progenitor cells and pentosan polysulfate, a novel chondrogenic agent: preliminary study in an ovine model. Neurosurg Focus 28:E4, 2010

    • Search Google Scholar
    • Export Citation
  • 21

    Gronthos S, , McCarty R, , Mrozik K, , Fitter S, , Paton S, & Menicanin D, et al.: Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues. Stem Cells Dev 18:12531262, 2009

    • Search Google Scholar
    • Export Citation
  • 22

    Gruber HE, , Johnson TL, , Leslie K, , Ingram JA, , Martin D, & Hoelscher G, et al.: Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine (Phila Pa 1976) 27:16261633, 2002

    • Search Google Scholar
    • Export Citation
  • 23

    Hee HT, , Ismail HD, , Lim CT, , Goh JC, & Wong HK: Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc. J Bone Joint Surg Br 92:726736, 2010

    • Search Google Scholar
    • Export Citation
  • 24

    Henriksson HB, , Svanvik T, , Jonsson M, , Hagman M, , Horn M, & Lindahl A, et al.: Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine 34:141148, 2009

    • Search Google Scholar
    • Export Citation
  • 25

    Hiyama A, , Mochida J, , Iwashina T, , Omi H, , Watanabe T, & Serigano K, et al.: Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26:589600, 2008

    • Search Google Scholar
    • Export Citation
  • 26

    Hohaus C, , Ganey TM, , Minkus Y, & Meisel HJ: Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J 17:Suppl 4 492503, 2008

    • Search Google Scholar
    • Export Citation
  • 27

    Huang B, , Zhuang Y, , Li CQ, , Liu LT, & Zhou Y: Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine (Phila Pa 1976) 36:22522259, 2011

    • Search Google Scholar
    • Export Citation
  • 28

    Iwashina T, , Mochida J, , Sakai D, , Yamamoto Y, , Miyazaki T, & Ando K, et al.: Feasibility of using a human nucleus pulposus cell line as a cell source in cell transplantation therapy for intervertebral disc degeneration. Spine (Phila Pa 1976) 31:11771186, 2006

    • Search Google Scholar
    • Export Citation
  • 29

    Jeong JH, , Jin ES, , Min JK, , Jeon SR, , Park CS, & Kim HS, et al.: Human mesenchymal stem cells implantation into the degenerated coccygeal disc of the rat. Cytotechnology 59:5564, 2009

    • Search Google Scholar
    • Export Citation
  • 30

    Jeong JH, , Lee JH, , Jin ES, , Min JK, , Jeon SR, & Choi KH: Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir (Wien) 152:17711777, 2010

    • Search Google Scholar
    • Export Citation
  • 31

    Kalbhen DA: Pharmacological studies on the anti-inflammatory effect of a semi-synthetic polysaccharide (pentosan polysulfate). Pharmacology 9:7479, 1973

    • Search Google Scholar
    • Export Citation
  • 32

    Kavalkovich KW, , Boynton RE, , Murphy JM, & Barry F: Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell Dev Biol Anim 38:457466, 2002

    • Search Google Scholar
    • Export Citation
  • 33

    Kim YJ, , Sah RL, , Doong JY, & Grodzinsky AJ: Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168176, 1988

    • Search Google Scholar
    • Export Citation
  • 34

    Knudson CB: Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today 69:174196, 2003

    • Search Google Scholar
    • Export Citation
  • 35

    Kujawa MJ, , Carrino DA, & Caplan AI: Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 114:519528, 1986

    • Search Google Scholar
    • Export Citation
  • 36

    Latham JM, , Pearcy MJ, , Costi JJ, , Moore R, , Fraser RD, & Vernon-Roberts B: Mechanical consequences of annular tears and subsequent intervertebral disc degeneration. Clin Biomech (Bristol, Avon) 9:211219, 1994

    • Search Google Scholar
    • Export Citation
  • 37

    Masuda K, , Aota Y, , Muehleman C, , Imai Y, , Okuma M, & Thonar EJ, et al.: A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine (Phila Pa 1976) 30:514, 2005

    • Search Google Scholar
    • Export Citation
  • 38

    Meisel HJ, , Ganey T, , Hutton WC, , Libera J, , Minkus Y, & Alasevic O: Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J 15:Suppl 3 S397S405, 2006

    • Search Google Scholar
    • Export Citation
  • 39

    Meisel HJ, , Siodla V, , Ganey T, , Minkus Y, , Hutton WC, & Alasevic OJ: Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc. Biomol Eng 24:521, 2007

    • Search Google Scholar
    • Export Citation
  • 40

    Melrose J, , Burkhardt D, , Taylor TK, , Dillon CT, , Read R, & Cake M, et al.: Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease. Eur Spine J 18:479489, 2009

    • Search Google Scholar
    • Export Citation
  • 41

    Melrose J, , Ghosh P, , Taylor TK, , Latham J, & Moore R: Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration. J Spinal Disord 10:5567, 1997

    • Search Google Scholar
    • Export Citation
  • 42

    Melrose J, , Ghosh P, , Taylor TK, , Vernon-Roberts B, , Latham J, & Moore R: Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur Spine J 6:376384, 1997

    • Search Google Scholar
    • Export Citation
  • 43

    Melrose J, , Roberts S, , Smith S, , Menage J, & Ghosh P: Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine (Phila Pa 1976) 27:12781285, 2002

    • Search Google Scholar
    • Export Citation
  • 44

    Melrose J, , Shu C, , Young C, , Ho R, , Smith MM, & Young AA, et al.: Mechanical destabilization induced by controlled annular incision of the intervertebral disc dysregulates metalloproteinase expression and induces disc degeneration. Spine (Phila Pa 1976) 37:1825, 2012

    • Search Google Scholar
    • Export Citation
  • 45

    Melrose J, , Smith SM, , Fuller ES, , Young AA, , Roughley PJ, & Dart A, et al.: Biglycan and fibromodulin fragmentation correlates with temporal and spatial annular remodelling in experimentally injured ovine intervertebral discs. Eur Spine J 16:21932205, 2007

    • Search Google Scholar
    • Export Citation
  • 46

    Miyamoto H, , Doita M, , Nishida K, , Yamamoto T, , Sumi M, & Kurosaka M: Effects of cyclic mechanical stress on the production of inflammatory agents by nucleus pulposus and anulus fibrosus derived cells in vitro. Spine (Phila Pa 1976) 31:49, 2006

    • Search Google Scholar
    • Export Citation
  • 47

    Moore RJ, , Crotti TN, , Osti OL, , Fraser RD, & Vernon-Roberts B: Osteoarthrosis of the facet joints resulting from anular rim lesions in sheep lumbar discs. Spine (Phila Pa 1976) 24:519525, 1999

    • Search Google Scholar
    • Export Citation
  • 48

    Moore RJ, , Osti OL, , Vernon-Roberts B, & Fraser RD: Changes in endplate vascularity after an outer anulus tear in the sheep. Spine (Phila Pa 1976) 17:874878, 1992

    • Search Google Scholar
    • Export Citation
  • 49

    Moore RJ, , Vernon-Roberts B, , Osti OL, & Fraser RD: Remodeling of vertebral bone after outer anular injury in sheep. Spine (Phila Pa 1976) 21:936940, 1996

    • Search Google Scholar
    • Export Citation
  • 50

    Oehme D, , Ghosh P, , Shimmon S, , Wu J, , McDonald C, & Troupis JM, et al.: Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model. J Neurosurg Spine 20:657669, 2014

    • Search Google Scholar
    • Export Citation
  • 51

    Oehme D, , Goldschlager T, , Rosenfeld J, , Danks A, , Ghosh P, & Gibbon A, et al.: Lateral surgical approach to lumbar intervertebral discs in an ovine model. ScientificWorldJournal 2012:873726, 2012

    • Search Google Scholar
    • Export Citation
  • 52

    Peng B, , Hao J, , Hou S, , Wu W, , Jiang D, & Fu X, et al.: Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976) 31:560566, 2006

    • Search Google Scholar
    • Export Citation
  • 53

    Pfirrmann CW, , Metzdorf A, , Zanetti M, , Hodler J, & Boos N: Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:18731878, 2001

    • Search Google Scholar
    • Export Citation
  • 54

    Pockert AJ, , Richardson SM, , Le Maitre CL, , Lyon M, , Deakin JA, & Buttle DJ, et al.: Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482491, 2009

    • Search Google Scholar
    • Export Citation
  • 55

    Roberts S, , Evans H, , Trivedi J, & Menage J: Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88:Suppl 2 1014, 2006

    • Search Google Scholar
    • Export Citation
  • 56

    Roughley PJ, , Melching LI, , Heathfield TF, , Pearce RH, & Mort JS: The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 15:Suppl 3 S326S332, 2006

    • Search Google Scholar
    • Export Citation
  • 57

    Ruan DK, , Xin H, , Zhang C, , Wang C, , Xu C, & Li C, et al.: Experimental intervertebral disc regeneration with tissue-engineered composite in a canine model. Tissue Eng Part A 16:23812389, 2010

    • Search Google Scholar
    • Export Citation
  • 58

    Sakai D, , Mochida J, , Iwashina T, , Watanabe T, , Nakai T, & Ando K, et al.: Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976) 30:23792387, 2005

    • Search Google Scholar
    • Export Citation
  • 59

    Sato M, , Asazuma T, , Ishihara M, , Ishihara M, , Kikuchi T, & Kikuchi M, et al.: An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine (Phila Pa 1976) 28:548553, 2003

    • Search Google Scholar
    • Export Citation
  • 60

    Séguin CA, , Pilliar RM, , Madri JA, & Kandel RA: TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976) 33:356365, 2008

    • Search Google Scholar
    • Export Citation
  • 61

    Shamji MF, , Setton LA, , Jarvis W, , So S, , Chen J, & Jing L, et al.: Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 62:19741982, 2010

    • Search Google Scholar
    • Export Citation
  • 62

    Shi S, & Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696704, 2003

    • Search Google Scholar
    • Export Citation
  • 63

    Smith MM, , Ghosh P, , Numata Y, & Bansal MK: The effects of orally administered calcium pentosan polysulfate on inflammation and cartilage degradation produced in rabbit joints by intraarticular injection of a hyaluronate-polylysine complex. Arthritis Rheum 37:125136, 1994

    • Search Google Scholar
    • Export Citation
  • 64

    Stegemann H, & Stalder K: Determination of hydroxyproline. Clin Chim Acta 18:267273, 1967

  • 65

    Takada T, , Nishida K, , Maeno K, , Kakutani K, , Yurube T, & Doita M, et al.: Intervertebral disc and macrophage interaction induces mechanical hyperalgesia and cytokine production in a herniated disc model in rats. Arthritis Rheum 64:26012610, 2012

    • Search Google Scholar
    • Export Citation
  • 66

    Takizawa M, , Ohuchi E, , Yamanaka H, , Nakamura H, , Ikeda E, & Ghosh P, et al.: Production of tissue inhibitor of metalloproteinases 3 is selectively enhanced by calcium pentosan polysulfate in human rheumatoid synovial fibroblasts. Arthritis Rheum 43:812820, 2000

    • Search Google Scholar
    • Export Citation
  • 67

    Takizawa M, , Yatabe T, , Okada A, , Chijiiwa M, , Mochizuki S, & Ghosh P, et al.: Calcium pentosan polysulfate directly inhibits enzymatic activity of ADAMTS4 (aggrecanase-1) in osteoarthritic chondrocytes. FEBS Lett 582:29452949, 2008

    • Search Google Scholar
    • Export Citation
  • 68

    Troeberg L, , Fushimi K, , Khokha R, , Emonard H, , Ghosh P, & Nagase H: Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases. FASEB J 22:35153524, 2008

    • Search Google Scholar
    • Export Citation
  • 69

    Troeberg L, , Mulloy B, , Ghosh P, , Lee MH, , Murphy G, & Nagase H: Pentosan polysulfate increases affinity between ADAMTS-5 and TIMP-3 through formation of an electrostatically driven trimolecular complex. Biochem J 443:307315, 2012

    • Search Google Scholar
    • Export Citation
  • 70

    Urban JP, & Roberts S: Degeneration of the intervertebral disc. Arthritis Res Ther 5:120130, 2003

  • 71

    Vernon-Roberts B, & Pirie CJ: Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol Rehabil 16:1321, 1977

    • Search Google Scholar
    • Export Citation
  • 72

    Vo NV, , Hartman RA, , Yurube T, , Jacobs LJ, , Sowa GA, & Kang JD: Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 13:331341, 2013

    • Search Google Scholar
    • Export Citation
  • 73

    Vos T, , Flaxman AD, , Naghavi M, , Lozano R, , Michaud C, & Ezzati M, et al.: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010 a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:21632196, 2012. (Erratum in Lancet 381: 628, 2013)

    • Search Google Scholar
    • Export Citation
  • 74

    Yoshikawa T, , Ueda Y, , Miyazaki K, , Koizumi M, & Takakura Y: Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976) 35:E475E480, 2010

    • Search Google Scholar
    • Export Citation
  • 75

    Zhang YG, , Guo X, , Xu P, , Kang LL, & Li J: Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430 219226, 2005

    • Search Google Scholar
    • Export Citation
  • 76

    Zuk PA, , Zhu M, , Ashjian P, , De Ugarte DA, , Huang JI, & Mizuno H, et al.: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:42794295, 2002

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 109 109 20
Full Text Views 1158 155 0
PDF Downloads 869 86 1
EPUB Downloads 0 0 0