Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: bone graft extenders and substitutes

View More View Less
  • 1 Department of Neurosurgery, University of Wisconsin, Madison, Wisconsin; Department of Neurosurgery, Mount Sinai Medical School, New York, New York; Department of Neurosurgery, University of Washington, Seattle, Washington; Department of Neurosurgery, Indiana University, Indianapolis, Indiana; Departments of Orthopedic Surgery and Neurosurgery, University of California at Los Angeles, California; Department of Neurosurgery, University of Alabama at Birmingham, Alabama; Department of Neurosurgery, Emory University, Atlanta, Georgia; Bone and Joint Clinic of Houston, Texas; and Department of Neurosurgery, Brown University, Providence, Rhode Island
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

If the inline PDF is not rendering correctly, you can download the PDF file here.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address reprint requests to: Daniel K. Resnick, M.D., Department of Neurological Surgery, University of Wisconsin Medical School, K4/834 Clinical Science Center, 600 Highland Avenue, Madison, Wisconsin 53792. email: Resnick@neurosurg.wisc.edu.
  • 1.

    Boden SD, , Kang J, & Sandhu H, et al: Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 27:26622673, 2002 Boden SD, Kang J, Sandhu H, et al: Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 27:2662–2673, 2002

    • Search Google Scholar
    • Export Citation
  • 2.

    Burkus JK, , Gornet MF, & Dickman CF, et al: Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord 15:337349, 2002 Burkus JK, Gornet MF, Dickman CF, et al: Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord 15:337–349, 2002

    • Search Google Scholar
    • Export Citation
  • 3.

    Burkus JK, , Heim SE, & Gornet MF, et al: Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spin Disord Tech 16:113122, 2003 Burkus JK, Heim SE, Gornet MF, et al: Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spin Disord Tech 16:113–122, 2003

    • Search Google Scholar
    • Export Citation
  • 4.

    Kasai Y, , Takegami K, & Uchida A: Mixture ratios of local bone to artificial bone in lumbar posterolateral fusion. J Spin Disord Tech 16:3137, 2003 Kasai Y, Takegami K, Uchida A: Mixture ratios of local bone to artificial bone in lumbar posterolateral fusion. J Spin Disord Tech 16:31–37, 2003

    • Search Google Scholar
    • Export Citation
  • 5.

    Linovitz RJ, & Peppers TA: Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion. Orthopedics 25 (5 Suppl):S585S589, 2002 Linovitz RJ, Peppers TA: Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion. Orthopedics 25 (5 Suppl):S585–S589, 2002

    • Search Google Scholar
    • Export Citation
  • 6.

    Lowery GL, , Kulkarni S, & Pennisi AE: Use of autologous growth factors in lumbar spinal fusion. Bone 25 (2 Suppl):S47S50, 1999 Lowery GL, Kulkarni S, Pennisi AE: Use of autologous growth factors in lumbar spinal fusion. Bone 25 (2 Suppl):S47–S50, 1999

    • Search Google Scholar
    • Export Citation
  • 7.

    Thalgott JS, , Giuffre JM, & Fritts K, et al: Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J 1:131137, 2001 Thalgott JS, Giuffre JM, Fritts K, et al: Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J 1:131–137, 2001

    • Search Google Scholar
    • Export Citation
  • 8.

    Thalgott JS, , Klezl Z, & Timlin M, et al: Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine 27:E518E527, 2002 Thalgott JS, Klezl Z, Timlin M, et al: Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine 27:E518–E527, 2002

    • Search Google Scholar
    • Export Citation

Metrics