Analysis of in vivo kinematics of 3 different cervical devices: Bryan disc, ProDisc-C, and Prestige LP disc

Clinical article

Izabela Kowalczyk B.HSc.1,2, Bruno C. R. Lazaro M.D.3, Marie Fink B.Sc.3, Doron Rabin M.D.3, and Neil Duggal M.D., M.Sc., F.R.C.S.C.1,3
View More View Less
  • 1 Department of Medical Biophysics;
  • | 2 Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario; and
  • | 3 Division of Clinical Neurological Sciences: Neurosurgery, University Hospital, London Health Sciences Centre, London, Ontario, Canada
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Object

Cervical arthroplasty has emerged as a means of preventing adjacent segment disease by preserving motion, restoring sagittal balance, and mimicking natural spinal kinematics. The purpose of this retrospective in vivo study was to characterize the impact of arthroplasty on sagittal balance and segmental kinematics of the cervical spine.

Methods

Sixty patients receiving the Bryan disc, ProDisc-C, or Prestige LP disc were retrospectively analyzed. Only single-level arthroplasty cases were included in this study. Lateral dynamic radiographs of the cervical spine were evaluated using quantitative measurement analysis software to determine the kinematics at the index level both preoperatively and 1 year postoperatively. Collected parameters included range of motion (ROM), disc angles, shell angles, anterior and posterior disc heights (ADHs/PDHs), translation, and center of rotation (COR). Preoperative and postoperative data were compared using the Student t-test, with p < 0.05 indicating significance.

Results

The Bryan and Prestige LP discs preserved motion, whereas the ProDisc-C increased segmental ROM from extension to flexion. Following surgery, the Bryan disc exhibited significant shell angle kyphosis, while ProDisc-C and Prestige LP retained lordosis. Both ADHs and PDHs decreased following insertion of the Bryan disc. In contrast, the ProDisc-C increased the ADHs and PDHs by 80% and 52%, respectively, and the Prestige LP disc increased the ADHs and PDHs by 20%. Only the ProDisc-C demonstrated significant translation of 0.7 mm. The ProDisc-C shifted the COR x by 0.9 mm anteriorly, while the Prestige LP disc demonstrated a significant superior shift of 2.2 mm in COR y.

Conclusions

All discs adequately maintained ROM at the surgical level. The greatest difference among the 3 devices was in the disc height and index angle measurements.

Abbreviations used in this paper:

ADH = anterior disc height; ASD = adjacent segment disease; COR = center of rotation; DA = disc angle; DDD = degenerative disc disease; PDH = posterior disc height; ROM = range of motion; SA = shell angle; TDR = total disc replacement.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Adams MA, & Roughley PJ: What is intervertebral disc degeneration, and what causes it?. Spine (Phila Pa 1976) 31:21512161, 2006

  • 2

    Baba H, , Furusawa N, , Imura S, , Kawahara N, , Tsuchiya H, & Tomita K: Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine (Phila Pa 1976) 18:21672173, 1993

    • Search Google Scholar
    • Export Citation
  • 3

    Bertagnoli R, , Duggal N, , Pickett GE, , Wigfield CC, , Gill SS, & Karg A, et al.: Cervical total disc replacement, part two: clinical results. Orthop Clin North Am 36:355362, 2005

    • Search Google Scholar
    • Export Citation
  • 4

    Bertagnoli R, , Yue JJ, , Pfeiffer F, , Fenk-Mayer A, , Lawrence JP, & Kershaw T, et al.: Early results after ProDisc-C cervical disc replacement. J Neurosurg Spine 2:403410, 2005

    • Search Google Scholar
    • Export Citation
  • 5

    Borden AG, , Rechtman AM, & Gershon-Cohen J: The normal cervical lordosis. Radiology 74:806809, 1960

  • 6

    Buckwalter JA: Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 20:13071314, 1995

  • 7

    Cherubino P, , Benazzo F, , Borromeo U, & Perle S: Degenerative arthritis of the adjacent spinal joints following anterior cervical spinal fusion: clinicoradiologic and statistical correlations. Ital J Orthop Traumatol 16:533543, 1990

    • Search Google Scholar
    • Export Citation
  • 8

    Crawford NR, & Dickman CA, Cervical spine stability. Yoganandan N, , Pintar FA, & Larson SJ, et al.: Frontiers in Head and Neck Trauma: Clinical and Biomechanical Amsterdam, IOS Press, 1998. 539567

    • Search Google Scholar
    • Export Citation
  • 9

    Davis AG: Injuries of the cervical spine. JAMA 127:149156, 1945

  • 10

    Döhler JR, , Kahn MR, & Hughes SP: Instability of the cervical spine after anterior interbody fusion. A study on its incidence and clinical significance in 21 patients. Arch Orthop Trauma Surg 104:247250, 1985

    • Search Google Scholar
    • Export Citation
  • 11

    Emery SE, , Bohlman HH, , Bolesta MJ, & Jones PK: Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy. Two to seventeen-year follow-up. J Bone Joint Surg Am 80:941951, 1998

    • Search Google Scholar
    • Export Citation
  • 12

    Epstein JA: Common errors in the diagnosis of herniation of the intervertebral disk. Ind Med Surg 39:481488, 1970

  • 13

    Fong SY, , DuPlessis SJ, , Casha S, & Hurlbert RJ: Design limitations of Bryan disc arthroplasty. Spine J 6:233241, 2006

  • 14

    Geisler FH, , Caspar W, , Pitzen T, & Johnston TA: Reoperation in patients after anterior cervical plate stabilization in degenerative disease. Spine (Phila Pa 1976) 23:911920, 1998

    • Search Google Scholar
    • Export Citation
  • 15

    Gore DR, , Sepic SB, & Gardner GM: Roentgenographic findings of the cervical spine in asymptomatic people. Spine (Phila Pa 1976) 11:521524, 1986

    • Search Google Scholar
    • Export Citation
  • 16

    Harrison DD, , Harrison DE, , Janik TJ, , Cailliet R, , Ferrantelli JR, & Haas JW, et al.: Modeling of the sagittal cervical spine as a method to discriminate hypolordosis: results of elliptical and circular modeling in 72 asymptomatic subjects, 52 acute neck pain subjects, and 70 chronic neck pain subjects. Spine (Phila Pa 1976) 29:24852492, 2004

    • Search Google Scholar
    • Export Citation
  • 17

    Hilibrand AS, , Carlson GD, , Palumbo MA, , Jones PK, & Bohlman HH: Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519528, 1999

    • Search Google Scholar
    • Export Citation
  • 18

    Hohl M: Soft-tissue injuries of the neck in automobile accidents. Factors influencing prognosis. J Bone Joint Surg Am 56:16751682, 1974

    • Search Google Scholar
    • Export Citation
  • 19

    Johnson JP, , Lauryssen C, , Cambron HO, , Pashman R, , Regan JJ, & Anand N, et al.: Sagittal alignment and the Bryan cervical artificial disc. Neurosurg Focus 17:6 E14, 2004

    • Search Google Scholar
    • Export Citation
  • 20

    Katsuura A, , Hukuda S, , Saruhashi Y, & Mori K: Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J 10:320324, 2001

    • Search Google Scholar
    • Export Citation
  • 21

    Kim SW, , Shin JH, , Arbatin JJ, , Park MS, , Chung YK, & McAfee PC: Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine. Eur Spine J 17:2029, 2008

    • Search Google Scholar
    • Export Citation
  • 22

    Lazaro BC, , Yucesoy K, , Yuksel KZ, , Kowalczyk I, , Rabin D, & Fink M, et al.: Effect of arthroplasty design on cervical spine kinematics: analysis of the Bryan Disc, ProDisc-C, and Synergy disc. Neurosurg Focus 28:6 E6, 2010

    • Search Google Scholar
    • Export Citation
  • 23

    Matsunaga S, , Kabayama S, , Yamamoto T, , Yone K, , Sakou T, & Makanishi K: Strain on intervertebral discs after anterior cervical decompression and fusion. Spine (Phila Pa 1976) 24:670675, 1999

    • Search Google Scholar
    • Export Citation
  • 24

    Pallis C, , Jones AM, & Spillane JD: Cervical spondylosis; incidence and implications. Brain 77:274289, 1954

  • 25

    Pickett GE, , Mitsis DK, , Sekhon LH, , Sears WR, & Duggal N: Effects of a cervical disc prosthesis on segmental and cervical spine alignment. Neurosurg Focus 17:3 E5, 2004

    • Search Google Scholar
    • Export Citation
  • 26

    Pickett GE, , Rouleau JP, & Duggal N: Kinematic analysis of the cervical spine following implantation of an artificial cervical disc. Spine (Phila Pa 1976) 30:19491954, 2005

    • Search Google Scholar
    • Export Citation
  • 27

    Pickett GE, , Sekhon LH, , Sears WR, & Duggal N: Complications with cervical arthroplasty. J Neurosurg Spine 4:98105, 2006

  • 28

    Rabin D, , Bertagnoli R, , Wharton N, , Pickett GE, & Duggal N: Sagittal balance influences range of motion: an in vivo study with the ProDisc-C. Spine J 9:128133, 2009

    • Search Google Scholar
    • Export Citation
  • 29

    Rabin D, , Pickett GE, , Bisnaire L, & Duggal N: The kinematics of anterior cervical discectomy and fusion versus artificial cervical disc: a pilot study. Neurosurgery 61:3 Suppl 100105, 2007

    • Search Google Scholar
    • Export Citation
  • 30

    Rajshekhar V, , Arunkumar MJ, & Kumar SS: Changes in cervical spine curvature after uninstrumented one- and two-level corpectomy in patients with spondylotic myelopathy. Neurosurgery 52:799805, 2003

    • Search Google Scholar
    • Export Citation
  • 31

    Rechtman AM, , Boreadis Borden AG, & Gershon-Cohen J: The lordotic curve of the cervical spine. Clin Orthop Relat Res 20:208216, 1961

  • 32

    Reitman CA, , Hipp JA, , Nguyen L, & Esses SI: Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine (Phila Pa 1976) 29:E221E226, 2004

    • Search Google Scholar
    • Export Citation
  • 33

    Reitman CA, , Mauro KM, , Nguyen L, , Ziegler JM, & Hipp JA: Intervertebral motion between flexion and extension in asymptomatic individuals. Spine (Phila Pa 1976) 29:28322843, 2004

    • Search Google Scholar
    • Export Citation
  • 34

    Riina J, , Patel A, , Dietz JW, , Hoskins JS, , Trammell TR, & Schwartz DD: Comparison of single-level cervical fusion and a metal-on-metal cervical disc replacement device. Am J Orthop 37:E71E77, 2008

    • Search Google Scholar
    • Export Citation
  • 35

    Rousseau MA, , Cottin P, , Levante S, , Nogier A, , Lazennec JV, & Skalli W: In vivo kinematics of two types of ball-and-socket cervical disc replacements in the sagittal plane: cranial versus caudal geometric center. Spine (Phila Pa 1976) 33:E6E9, 2008

    • Search Google Scholar
    • Export Citation
  • 36

    Sears WR, , Duggal N, , Sekhon LH, & Williamson OD: Segmental malalignment with the Bryan cervical disc prosthesis—contributing factors. J Spinal Disord Tech 20:111117, 2007

    • Search Google Scholar
    • Export Citation
  • 37

    Sears WR, , Sekhon LH, , Duggal N, & Williamson OD: Segmental malalignment with the Bryan Cervical Disc prosthesis—does it occur?. J Spinal Disord Tech 20:16, 2007

    • Search Google Scholar
    • Export Citation
  • 38

    Sekhon LHS, & Ball JR: Artificial cervical disc replacement: principles, types and techniques. Neurol India 53:445450, 2005

  • 39

    Shim CS, , Lee SH, , Park HJ, , Kang HS, & Hwang JH: Early clinical and radiologic outcomes of cervical arthroplasty with Bryan Cervical Disc prosthesis. J Spinal Disord Tech 19:465470, 2006

    • Search Google Scholar
    • Export Citation
  • 40

    Traynelis VC: The Prestige cervical disc. Neurosurg Clin N Am 16:621628, vi, 2005

  • 41

    Troyanovich SJ, , Stroink AR, , Kattner KA, , Dornan WA, & Gubina I: Does anterior plating maintain cervical lordosis versus conventional fusion techniques? A retrospective analysis of patients receiving single-level fusions. J Spinal Disord Tech 15:6974, 2002

    • Search Google Scholar
    • Export Citation
  • 42

    Vernon-Roberts B, & Pirie CJ: Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol Rehabil 16:1321, 1977

    • Search Google Scholar
    • Export Citation
  • 43

    Wigfield C, , Gill S, , Nelson R, , Langdon I, , Metcalf N, & Robertson J: Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg 96:1 Suppl 1721, 2002

    • Search Google Scholar
    • Export Citation
  • 44

    Wigfield CC, , Skrzypiec D, , Jackowski A, & Adams MA: Internal stress distribution in cervical intervertebral discs: the influence of an artificial cervical joint and simulated anterior interbody fusion. J Spinal Disord Tech 16:441449, 2003

    • Search Google Scholar
    • Export Citation
  • 45

    Yonenobu K, , Okada K, , Fuji T, , Fujiwara K, , Yamashita K, & Ono K: Causes of neurologic deterioration following surgical treatment of cervical myelopathy. Spine (Phila Pa 1976) 11:818823, 1986

    • Search Google Scholar
    • Export Citation
  • 46

    Zhao KD, , Yang C, , Zhao C, & An KN: Assessment of non-invasive intervertebral motion measurements in the lumbar spine. J Biomech 38:19431946, 2005

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 864 156 12
Full Text Views 153 13 1
PDF Downloads 156 12 2
EPUB Downloads 0 0 0