Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions

A review

Restricted access

The authors present a review of spinal cord blood supply, discussing the anatomy of the vascular system and physiological aspects of blood flow regulation in normal and injured spinal cords. Unique anatomical functional properties of vessels and blood supply determine the susceptibility of the spinal cord to damage, especially ischemia. Spinal cord injury (SCI), for example, complicating thoracoabdominal aortic aneurysm repair is associated with ischemic trauma. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic SCI causes complex changes in spinal cord blood flow, which are closely related to the severity of injury. Manipulating physiological parameters such as mean arterial blood pressure and intrathecal pressure may be beneficial for patients with an SCI. Studying the physiopathological processes of the spinal cord under vascular compromise remains challenging because of its central role in almost all of the body's hemodynamic and neurofunctional processes.

Abbreviations used in this paper: ASA = anterior spinal artery; CSFP = CSF pressure; MABP = mean arterial blood pressure; MEP = motor evoked potential; PSA = posterior spinal artery; SCBF = spinal cord blood flow; SCI = spinal cord injury; SCPP = spinal cord perfusion pressure; SSEP = somatosensory evoked potential.

Article Information

Address correspondence to: Nicholas Theodore, M.D., Neuroscience Publications, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013. email: neuropub@chw.edu.

Please include this information when citing this paper: published online June 10, 2011; DOI: 10.3171/2011.4.SPINE10543.

© AANS, except where prohibited by US copyright law.

Headings

Figures

  • View in gallery

    Vascularization of lumbar spinal cord. Contribution of the ASA and PSA in supplying the blood to the spinal cord. a. = artery/arterial. Used with permission from Nicholas Theodore, M.D.

  • View in gallery

    Anterolateral view of lumbar spinal cord. Used with permission from Nicholas Theodore, M.D.

  • View in gallery

    Relationships among SCBF (A), CSFP (B), arterial blood pressure (ABP, C), and spinal cord tissue oxygen partial pressure (PbtO2, D) before and after moderate SCI. See comments in text.

References

  • 1

    Allen WE IIID'Angelo CMKier EL: Correlation of microangiographic and electrophysiologic changes in experimental spinal cord trauma. Radiology 111:1071151974

    • Search Google Scholar
    • Export Citation
  • 2

    Barone GWJoob AWFlanagan TLDunn CEKron IL: The effect of hyperemia on spinal cord function after temporary thoracic aortic occlusion. J Vasc Surg 8:5355401988

    • Search Google Scholar
    • Export Citation
  • 3

    Berendes JNBredée JJSchipperheyn JJMashhour YA: Mechanisms of spinal cord injury after cross-clamping of the descending thoracic aorta. Circulation 66:I112I1161982

    • Search Google Scholar
    • Export Citation
  • 4

    Bingham WGGoldman HFriedman SJMurphy SYashon DHunt WE: Blood flow in normal and injured monkey spinal cord. J Neurosurg 43:1621711975

    • Search Google Scholar
    • Export Citation
  • 5

    Blaisdell FWCooley DA: The mechanism of paraplegia after temporary thoracic aortic occlusion and its relationship to spinal fluid pressure. Surgery 51:3513551962

    • Search Google Scholar
    • Export Citation
  • 6

    Bolton B: The blood supply of the human spinal cord. J Neurol Psychiatrist 2:1371481939

  • 7

    Bower TCMurray MJGloviczki PYaksh TLHollier LHPairolero PC: Effects of thoracic aortic occlusion and cerebrospinal fluid drainage on regional spinal cord blood flow in dogs: correlation with neurologic outcome. J Vasc Surg 9:1351441989

    • Search Google Scholar
    • Export Citation
  • 8

    Carlson GDGorden CDNakazawa SWada ESmith JSLa-Manna JC: Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials. J Bone Joint Surg Am 85-A:951012003

    • Search Google Scholar
    • Export Citation
  • 9

    Carlson GDMinato YOkada AGorden CDWarden KEBarbeau JM: Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma 14:9519621997

    • Search Google Scholar
    • Export Citation
  • 10

    Cawthon DFSenter HJStewart WB: Comparison of hydrogen clearance and 14C-antipyrine autoradiography in the measurement of spinal cord blood flow after severe impact injury. J Neurosurg 52:8018071980

    • Search Google Scholar
    • Export Citation
  • 11

    Cinà CSLaganà ABruin GRicci CDoobay BTittley J: Thoracoabdominal aortic aneurysm repair: a prospective cohort study of 121 cases. Ann Vasc Surg 16:6316382002

    • Search Google Scholar
    • Export Citation
  • 12

    Clark FJMutch WASutton IRTeskey JMMcCutcheon KThiessen DB: Treatment of proximal aortic hypertension after thoracic aortic cross-clamping in dogs. Phlebotomy versus sodium nitroprusside/isoflurane. Anesthesiology 77:3573641992

    • Search Google Scholar
    • Export Citation
  • 13

    Coselli JSLemaire SAKöksoy CSchmittling ZCCurling PE: Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 35:6316392002

    • Search Google Scholar
    • Export Citation
  • 14

    Cox GSO'Hara PJHertzer NRPiedmonte MRKrajewski LPBeven EG: Thoracoabdominal aneurysm repair: a representative experience. J Vasc Surg 15:7807881992

    • Search Google Scholar
    • Export Citation
  • 15

    Crawford ESCrawford JLSafi HJCoselli JS: Redo operations for recurrent aneurysmal disease of the ascending aorta and transverse aortic arch. Ann Thorac Surg 40:4394551985

    • Search Google Scholar
    • Export Citation
  • 16

    Crawford ESCrawford JLSafi HJCoselli JSHess KRBrooks B: Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg 3:3894041986

    • Search Google Scholar
    • Export Citation
  • 17

    Crawford ESHess KRCohen ESCoselli JSSafi HJ: Ruptured aneurysm of the descending thoracic and thoracoabdominal aorta. Analysis according to size and treatment. Ann Surg 213:4174261991

    • Search Google Scholar
    • Export Citation
  • 18

    D'Ambra MNDewhirst WJacobs MBergus BBorges LHilgenberg A: Cross-clamping the thoracic aorta. Effect on intracranial pressure. Circulation 78:III198III2021988

    • Search Google Scholar
    • Export Citation
  • 19

    Dohrmann GJWagner FC JrWick KMBucy PC: Fine structural alterations in transitory traumatic paraplegia. Proc Veterans Adm Spinal Cord Inj Conf 18:681971

    • Search Google Scholar
    • Export Citation
  • 20

    Dohrmann GJWick KMBucy PC: Spinal cord blood flow patterns in experimental traumatic paraplegia. J Neurosurg 38:52581973

  • 21

    Dolan EJTator CH: The effect of blood transfusion, dopamine, and gamma hydroxybutyrate on posttraumatic ischemia of the spinal cord. J Neurosurg 56:3503581982

    • Search Google Scholar
    • Export Citation
  • 22

    Dong CCMacDonald DBJanusz MT: Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 74:S1873S18982002

    • Search Google Scholar
    • Export Citation
  • 23

    Ducker TBPerot PL Jr: Spinal cord oxygen and blood flow in trauma. Surg Forum 22:4134151971

  • 24

    Ducker TBSalcman MLucas JTGarrison WBPerot PL Jr: Experimental spinal cord trauma, II: blood flow, tissue oxygen, evoked potentials in both paretic and plegic monkeys. Surg Neurol 10:64701978

    • Search Google Scholar
    • Export Citation
  • 25

    Ducker TBSalcman MPerot PL JrBallantine D: Experimental spinal cord trauma, I: correlation of blood flow, tissue oxygen and neurologic status in the dog. Surg Neurol 10:60631978

    • Search Google Scholar
    • Export Citation
  • 26

    Duhamel GCallot VCozzone PJKober F: Spinal cord blood flow measurement by arterial spin labeling. Magn Reson Med 59:8468542008

    • Search Google Scholar
    • Export Citation
  • 27

    Elmore JRGloviczki PHarper CMPairolero PCMurray MJBourchier RG: Failure of motor evoked potentials to predict neurologic outcome in experimental thoracic aortic occlusion. J Vasc Surg 14:1311391991

    • Search Google Scholar
    • Export Citation
  • 28

    Fairholm DTurnbull I: Microangiographic study of experimental spinal injuries in dogs and rabbits. Surg Forum 21:4534551970

  • 29

    Fehlings MGTator CHLinden RD: The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol 74:2412591989

    • Search Google Scholar
    • Export Citation
  • 30

    Fried LCAparicio O: Experimental ischemia of the spinal cord. Histologic studies after anterior spinal artery occlusion. Neurology 23:2892931973

    • Search Google Scholar
    • Export Citation
  • 31

    Gharagozloo FNeville RF JrCox JL: Spinal cord protection during surgical procedures on the descending thoracic and thoracoabdominal aorta: a critical overview. Semin Thorac Cardiovasc Surg 10:73861998

    • Search Google Scholar
    • Export Citation
  • 32

    Gillilan LA: The arterial blood supply of the human spinal cord. J Comp Neurol 110:751031958

  • 33

    Griffiths IR: Spinal cord blood flow after acute experimental cord injury in dogs. J Neurol Sci 27:2472591976

  • 34

    Griffiths IRPitts LHCrawford RATrench JG: Spinal cord compression and blood flow. I The effect of raised cerebrospinal fluid pressure on spinal cord blood flow. Neurology 28:114511511978

    • Search Google Scholar
    • Export Citation
  • 35

    Guha ATator CHRochon J: Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke 20:3723771989

    • Search Google Scholar
    • Export Citation
  • 36

    Hamamoto YOgata TMorino THino MYamamoto H: Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury. Spine (Phila Pa 1976) 32:195519622007

    • Search Google Scholar
    • Export Citation
  • 37

    Hassler O: Blood supply to human spinal cord. A microangiographic study. Arch Neurol 15:3023071966

  • 38

    Hitchon PWLobosky JMYamada TJohnson GGirton RA: Effect of hemorrhagic shock upon spinal cord blood flow and evoked potentials. Neurosurgery 21:8498571987

    • Search Google Scholar
    • Export Citation
  • 39

    Holtz ANyström BGerdin B: Relation between spinal cord blood flow and functional recovery after blocking weight-induced spinal cord injury in rats. Neurosurgery 26:9529571990

    • Search Google Scholar
    • Export Citation
  • 40

    Horn EMTheodore NAssina RSpetzler RFSonntag VKPreul MC: The effects of intrathecal hypotension on tissue perfusion and pathophysiological outcome after acute spinal cord injury. Neurosurg Focus 25:5E122008

    • Search Google Scholar
    • Export Citation
  • 41

    Iwai AMonafo WW: The effects of lumbar sympathectomy on regional spinal cord blood flow in rats during acute hemorrhagic hypotension. J Neurosurg 76:6876911992

    • Search Google Scholar
    • Export Citation
  • 42

    Kazama SMasaki YMaruyama SIshihara A: Effect of altering cerebrospinal fluid pressure on spinal cord blood flow. Ann Thorac Surg 58:1121151994

    • Search Google Scholar
    • Export Citation
  • 43

    Kieffer EAmmar FChiras JBelli CRochat G: Traumatic rupture of the thoracoabdominal aorta. Eur J Vasc Surg 1:3533581987

  • 44

    Kindt GW: Autoregulation of spinal cord blood flow. Eur Neurol 6:19231972

  • 45

    Kobrine AIDoyle TFMartins AN: Autoregulation of spinal cord blood flow. Clin Neurosurg 22:5735811975

  • 46

    Kobrine AIDoyle TFMartins AN: Local spinal cord blood flow in experimental traumatic myelopathy. J Neurosurg 42:1441491975

  • 47

    Kobrine AIEvans DERizzoli HV: The role of the sympathetic nervous system in spinal cord autoregulation. Acta Neurol Scand Suppl 64:54551977

    • Search Google Scholar
    • Export Citation
  • 48

    Koyanagi ITator CHTheriault E: Silicone rubber microangiography of acute spinal cord injury in the rat. Neurosurgery 32:2602681993

    • Search Google Scholar
    • Export Citation
  • 49

    Laschinger JCCunningham JN JrNathan IMKnopp EACooper MMSpencer FC: Experimental and clinical assessment of the adequacy of partial bypass in maintenance of spinal cord blood flow during operations on the thoracic aorta. Ann Thorac Surg 36:4174261983

    • Search Google Scholar
    • Export Citation
  • 50

    Lazorthes GGouaze AZadeh JOSantini JJLazorthes YBurdin P: Arterial vascularization of the spinal cord: recent studies of anastomotic substitution pathways. J Neurosurg 35:2532621971

    • Search Google Scholar
    • Export Citation
  • 51

    Lobosky JMHitchon PWTorner JCYamada T: Spinal cord autoregulation in the sheep. Curr Surg 41:2642671984

  • 52

    Lohse DCSenter HJKauer JSWohns R: Spinal cord blood flow in experimental transient traumatic paraplegia. J Neurosurg 52:3353451980

    • Search Google Scholar
    • Export Citation
  • 53

    Mathé JFRichard IRoger JCPotagas Cel Masry WSPerrouin-Verbe B: Ischaemic myelopathy following aortic surgery or traumatic laceration of the aorta. Spinal Cord 36:1101161998

    • Search Google Scholar
    • Export Citation
  • 54

    Mauney MCBlackbourne LHLangenburg SEBuchanan SAKron ILTribble CG: Prevention of spinal cord injury after repair of the thoracic or thoracoabdominal aorta. Ann Thorac Surg 59:2452521995

    • Search Google Scholar
    • Export Citation
  • 55

    McCullough JLHollier LHNugent M: Paraplegia after thoracic aortic occlusion: influence of cerebrospinal fluid drainage. Experimental and early clinical results. J Vasc Surg 7:1531601988

    • Search Google Scholar
    • Export Citation
  • 56

    Molina JECogordan JEinzig SBianco RWRasmussen TClack RM: Adequacy of ascending aorta-descending aorta shunt during cross-clamping of the thoracic aorta for prevention of spinal cord injury. J Thorac Cardiovasc Surg 90:1261361985

    • Search Google Scholar
    • Export Citation
  • 57

    Naftchi NEDemeny MDeCrescito VTomasula JJFlamm ESCampbell JB: Biogenic amine concentrations in traumatized spinal cords of cats. Effect of drug therapy. J Neurosurg 40:52571974

    • Search Google Scholar
    • Export Citation
  • 58

    Ohashi TMorimoto TKawata KYamada TSakaki T: Correlation between spinal cord blood flow and arterial diameter following acute spinal cord injury in rats. Acta Neurochir (Wien) 138:3223291996

    • Search Google Scholar
    • Export Citation
  • 59

    Palleske KRKivelitz RLoew F: Experimental investigation on the control of spinal cord circulation. IV The effect of spinal or cerebral compression on the blood flow of the spinal cord. Acta Neurochir (Wien) 22:29411970

    • Search Google Scholar
    • Export Citation
  • 60

    Parke WW: Arteriovenous glomeruli of the human spinal cord and their possible functional implications. Clin Anat 17:5585632004

  • 61

    Parke WWWhalen JLBunger PCSettles HE: Intimal musculature of the lower anterior spinal artery. Spine (Phila Pa 1976) 20:207320791995

    • Search Google Scholar
    • Export Citation
  • 62

    Piano GGewertz BL: Mechanism of increased cerebrospinal fluid pressure with thoracic aortic occlusion. J Vasc Surg 11:6957011990

  • 63

    Reed JEAllen WE IIIDohrmann GJ: Effect of mannitol on the traumatized spinal cord. Microangiography, blood flow patterns, and electrophysiology. Spine (Phila Pa 1976) 4:3913971979

    • Search Google Scholar
    • Export Citation
  • 64

    Rivlin ASTator CH: Regional spinal cord blood flow in rats after severe cord trauma. J Neurosurg 49:8448531978

  • 65

    Robertazzi RRCunningham JN Jr: Intraoperative adjuncts of spinal cord protection. Semin Thorac Cardiovasc Surg 10:29341998

  • 66

    Rowland JWHawryluk GWKwon BFehlings MG: Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25:5E22008

    • Search Google Scholar
    • Export Citation
  • 67

    Sandler ANTator CH: Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J Neurosurg 45:6606761976

    • Search Google Scholar
    • Export Citation
  • 68

    Sasaki S: Vascular change in the spinal cord after impact injury in the rat. Neurosurgery 10:3603631982

  • 69

    Schepens MADefauw JJHamerlijnck RPVermeulen FE: Use of left heart bypass in the surgical repair of thoracoabdominal aortic aneurysms. Ann Vasc Surg 9:3273381995

    • Search Google Scholar
    • Export Citation
  • 70

    Senter HJVenes JL: Loss of autoregulation and posttraumatic ischemia following experimental spinal cord trauma. J Neurosurg 50:1982061979

    • Search Google Scholar
    • Export Citation
  • 71

    Singh USilver JRWelply NC: Hypotensive infarction of the spinal cord. Paraplegia 32:3143221994

  • 72

    Sliwa JAMaclean IC: Ischemic myelopathy: a review of spinal vasculature and related clinical syndromes. Arch Phys Med Rehabil 73:3653721992

    • Search Google Scholar
    • Export Citation
  • 73

    Smith AJMcCreery DBBloedel JRChou SN: Hyperemia, CO2 responsiveness, and autoregulation in the white matter following experimental spinal cord injury. J Neurosurg 48:2392511978

    • Search Google Scholar
    • Export Citation
  • 74

    Smith ALPender JWAlexander SC: Effects of PCO2 on spinal cord blood flow. Am J Physiol 216:115811631969

  • 75

    Svensson LGCrawford ESHess KRCoselli JSSafi HJ: Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17:3573701993

    • Search Google Scholar
    • Export Citation
  • 76

    Tabayashi K: Spinal cord protection during thoracoabdominal aneurysm repair. Surg Today 35:162005

  • 77

    Taira YMarsala M: Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Stroke 27:185018581996

    • Search Google Scholar
    • Export Citation
  • 78

    Tator CHKoyanagi I: Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:4834921997

  • 79

    Tsuji TMatsuyama YSato KIwata H: Evaluation of spinal cord blood flow during prostaglandin E1-induced hypotension with power Doppler ultrasonography. Spinal Cord 39:31362001

    • Search Google Scholar
    • Export Citation
  • 80

    Turnbull IM: Chapter 5. Blood supply of the spinal cord: normal and pathological considerations. Clin Neurosurg 20:56841973

  • 81

    Turnbull IM: Microvasculature of the human spinal cord. J Neurosurg 35:1411471971

  • 82

    Turnbull IMBrieg AHassler O: Blood supply of cervical spinal cord in man. A microangiographic cadaver study. J Neurosurg 24:9519651966

    • Search Google Scholar
    • Export Citation
  • 83

    Tveten L: Spinal cord vascularity. III The spinal cord arteries in man. Acta Radiol Diagn (Stockh) 17:2572731976

  • 84

    Vlajić I: Microangiographic observations of morphological vessel changes after experimental spinal cord trauma. Adv Neurol 20:4514601978

    • Search Google Scholar
    • Export Citation
  • 85

    Wallace MCTator CH: Successful improvement of blood pressure, cardiac output, and spinal cord blood flow after experimental spinal cord injury. Neurosurgery 20:7107151987

    • Search Google Scholar
    • Export Citation
  • 86

    Wallace MCTator CHFrazee P: Relationship between posttraumatic ischemia and hemorrhage in the injured rat spinal cord as shown by colloidal carbon angiography. Neurosurgery 18:4334391986

    • Search Google Scholar
    • Export Citation
  • 87

    Winnerkvist ABartoli SIliopoulos DCHess KRMiller CCSafi HJ: Spinal cord protection during aortic cross clamping: retrograde venous spinal cord perfusion, distal aortic perfusion, and cerebrospinal fluid drainage. Scand Cardiovasc J 36:6102002

    • Search Google Scholar
    • Export Citation
  • 88

    Young WDeCrescito VTomasula JJ: Effect of sympathectomy on spinal blood flow autoregulation and posttraumatic ischemia. J Neurosurg 56:7067101982

    • Search Google Scholar
    • Export Citation
  • 89

    Zeitin HLichtenstein BW: Occlusion of the anterior spinal artery: clinicopathologic report of a case and a review of the literature. Arch Neurol Psychiatry 36:961111936

    • Search Google Scholar
    • Export Citation

TrendMD

Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 423 423 45
Full Text Views 275 255 8
PDF Downloads 166 147 10
EPUB Downloads 0 0 0

PubMed

Google Scholar