The biomechanical contribution of varying posterior constructs following anterior thoracolumbar corpectomy and reconstruction

Laboratory investigation

View More View Less
  • 1 Departments of Neurosurgery and
  • 2 Orthopaedics, University of Utah; and
  • 3 Orthopaedic Research Laboratory, University of Utah Orthopaedic Center, Salt Lake City, Utah
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Thoracolumbar corpectomy is a procedure commonly required for the treatment of various pathologies involving the vertebral body. Although the biomechanical stability of anterior reconstruction with plating has been studied, the biomechanical contribution of posterior instrumentation to anterior constructs remains unknown. The purpose of this study was to evaluate biomechanical stability after anterior thoracolumbar corpectomy and reconstruction with varying posterior constructs by measuring bending stiffness for the axes of flexion/extension, lateral bending, and axial rotation.

Methods

Seven fresh human cadaveric thoracolumbar spine specimens were tested intact and after L-1 corpectomy and strut grafting with 4 different fixation techniques: anterior plating with bilateral, ipsilateral, contralateral, or no posterior pedicle screw fixation. Bending stiffness was measured under pure moments of ± 5 Nm in flexion/extension, lateral bending, and axial rotation, while maintaining an axial preload of 100 N with a follower load. Results for each configuration were normalized to the intact condition and were compared using ANOVA.

Results

Spinal constructs with anterior-posterior spinal reconstruction and bilateral posterior pedicle screws were significantly stiffer in flexion/extension than intact spines or spines with anterior plating alone. Anterior plating without pedicle screw fixation was no different from the intact spine in flexion/extension and lateral bending. All constructs had reduced stiffness in axial rotation compared with intact spines.

Conclusions

The addition of bilateral posterior instrumentation provided significantly greater stability at the thoracolumbar junction after total corpectomy than anterior plating and should be considered in cases in which anterior column reconstruction alone may be insufficient. In cases precluding bilateral posterior fixation, unilateral posterior instrumentation may provide some additional stability.

Abbreviation used in this paper: VB = vertebral body.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Meic H. Schmidt, M.D., Department of Neurosurgery, University of Utah School of Medicine, 175 North Medical Drive East Salt Lake City, Utah 84132. email: neuropub@hsc.utah.edu.
  • 1

    Bauer R, , Mostegl A, & Eichenauer M: An analysis of the results of Dwyer and Zielke instrumentations in the treatment of scoliosis. Arch Orthop Trauma Surg 105:302309, 1986

    • Search Google Scholar
    • Export Citation
  • 2

    Beisse R, , Mückley T, , Schmidt MH, , Hauschild M, & Bühren V: Surgical technique and results of endoscopic anterior spinal canal decompression. J Neurosurg Spine 2:128136, 2005

    • Search Google Scholar
    • Export Citation
  • 3

    Bence T, , Schreiber U, , Grupp T, , Steinhauser E, & Mittelmeier W: Two column lesions in the thoracolumbar junction: anterior, posterior or combined approach? A comparative biomechanical in vitro investigation. Eur Spine J 16:813820, 2007

    • Search Google Scholar
    • Export Citation
  • 4

    Brodke DS, , Bachus KN, , Mohr RA, & Nguyen BK: Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis. Spine J 1:373379, 2001

    • Search Google Scholar
    • Export Citation
  • 5

    Brodke DS, , Gollogly S, , Bachus KN, , Alexander Mohr R, & Nguyen BK: Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:17941801, 2003

    • Search Google Scholar
    • Export Citation
  • 6

    Disch AC, , Schaser KD, , Melcher I, , Luzzati A, , Feraboli F, & Schmoelz W: En bloc spondylectomy reconstructions in a biomechanical in-vitro study. Eur Spine J 17:715725, 2008

    • Search Google Scholar
    • Export Citation
  • 7

    Dwyer AF, & Schafer MF: Anterior approach to scoliosis. Results of treatment in fifty-one cases. J Bone Joint Surg Br 56:218224, 1974

  • 8

    Faro FD, , White KK, , Ahn JS, , Oka RS, , Mahar AT, & Bawa M, : Biomechanical analysis of anterior instrumentation for lumbar corpectomy. Spine 28:E468E471, 2003

    • Search Google Scholar
    • Export Citation
  • 9

    Flamme CH, , Hurschler C, , Heymann C, & von der Heide N: Comparative biomechanical testing of anterior and posterior stabilization procedures. Spine 30:E352E362, 2005

    • Search Google Scholar
    • Export Citation
  • 10

    Ghanayem AJ, & Zdeblick TA: Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop Relat Res 335:89100, 1997

    • Search Google Scholar
    • Export Citation
  • 11

    Hodgson AR, & Stock FE: A preliminary communication on the radical treatment of Pott's disease and Pott's paraplegia. Br J Surg 44:266275, 1956

    • Search Google Scholar
    • Export Citation
  • 12

    Humphries A, , Hawk W, & Berndt A: Anterior fusion of lumbar vertebrae: a surgical technique. Surg Clin North Am 41:16851700, 1961

  • 13

    Kanayama M, , Ng JT, , Cunningham BW, , Abumi K, , Kaneda K, & McAfee PC: Biomechanical analysis of anterior versus circumferential spinal reconstruction for various anatomic stages of tumor lesions. Spine 24:445450, 1999

    • Search Google Scholar
    • Export Citation
  • 14

    Kirkpatrick JS, , Wilber RG, , Likavec M, , Emery SE, & Ghanayem A: Anterior stabilization of thoracolumbar burst fractures using the Kaneda device: a preliminary report. Orthopedics 18:673678, 1995

    • Search Google Scholar
    • Export Citation
  • 15

    Mann KA, , McGowan DP, , Fredrickson BE, , Falahee M, & Yuan HA: A biomechanical investigation of short segment spinal fixation for burst fractures with varying degrees of posterior disruption. Spine 15:470478, 1990

    • Search Google Scholar
    • Export Citation
  • 16

    Muller W: Transperitoneale Freilegung der Wirbelsaule bei Tuberkuloser Spondylitis. Deutsche Ztschr für Chir 85:128135, 1906

  • 17

    Schreiber U, , Bence T, , Grupp T, , Steinhauser E, , Mückley T, & Mittelmeier W, : Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation. Eur Spine J 14:197204, 2005

    • Search Google Scholar
    • Export Citation
  • 18

    Schultheiss M, , Hartwig E, , Kinzl L, , Claes L, & Wilke HJ: Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93100, 2004

    • Search Google Scholar
    • Export Citation
  • 19

    Schultheiss M, , Hartwig E, , Sarkar M, , Kinzl L, , Claes L, & Wilke HJ: Biomechanical in vitro comparison of different mono- and bisegmental anterior procedures with regard to the strategy for fracture stabilisation using minimally invasive techniques. Eur Spine J 15:8289, 2006

    • Search Google Scholar
    • Export Citation
  • 20

    Shapiro SA, & Snyder W: Spinal instrumentation with a low complication rate. Surg Neurol 48:566574, 1997

  • 21

    Vahldiek MJ, & Panjabi MM: Stability potential of spinal instrumentations in tumor VB replacement surgery. Spine 23:543550, 1998

Metrics

All Time Past Year Past 30 Days
Abstract Views 371 143 15
Full Text Views 117 15 0
PDF Downloads 132 33 0
EPUB Downloads 0 0 0