Anterior bone cement augmentation in anterior lumbar interbody fusion and percutaneous pedicle screw fixation in patients with osteoporosis

Clinical article

Kyeong Hwan Kim Department of Orthopedic Surgery,

Search for other papers by Kyeong Hwan Kim in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Sang-Ho Lee Neurosurgery, and

Search for other papers by Sang-Ho Lee in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Dong Yeob Lee Neurosurgery, and

Search for other papers by Dong Yeob Lee in
jns
Google Scholar
PubMed
Close
 M.D.
,
Chan Shik Shim Neurosurgery, and

Search for other papers by Chan Shik Shim in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
, and
Dae Hyeon Maeng Thoracic and Cardiovascular Surgery, Wooridul Spine Hospital, Seoul, Korea

Search for other papers by Dae Hyeon Maeng in
jns
Google Scholar
PubMed
Close
 M.D.
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

Object

The purpose of the present study was to evaluate the efficacy of anterior polymethylmethacrylate (PMMA) cement augmentation in instrumented anterior lumbar interbody fusion (ALIF) for patients with osteoporosis.

Methods

Sixty-two patients with osteoporosis who had undergone single-level instrumented ALIF for spondylolisthesis and were followed for more than 2 years were included in the study. The patients were divided into 2 groups: instrumented ALIF alone (Group I) and instrumented ALIF with anterior PMMA augmentation (Group II). Sixty-one patients were interviewed to evaluate the clinical results, and plain radiographs and 3D CT scans were obtained at the last follow-up in 46 patients.

Results

The mean degree of cage subsidence was significantly higher in Group I (19.6%) than in Group II (5.2%) (p = 0.001). The mean decrease of vertebral body height at the index level was also significantly higher in Group I (10.7%) than in Group II (3.9%) (p = 0.001). No significant intergroup differences were observed in the incidence of radiographic adjacent-segment degeneration (ASD) or in terms of pain and functional improvement. The incidences of clinical ASD (23% in Group I and 10% in Group II) were not significantly different. There was 1 case of nonunion and 3 cases of screw migration in Group I, but none resulted in implant failure.

Conclusions

Anterior PMMA augmentation during instrumented ALIF in patients with osteoporosis was useful to prevent cage subsidence and vertebral body collapse. In addition, PMMA augmentation did not increase the nonunion rate and incidence of ASD.

Abbreviations used in this paper:

ALIF = anterior lumbar interbody fusion; ASD = adjacent-segment degeneration; BMD = bone mineral density; LIF = lumbar interbody fusion; ODI = Oswestry Disability Index; PMMA = polymethylmethacrylate; PSF = pedicle screw fixation; VAS = visual analog scale; VB = vertebral body.
  • Collapse
  • Expand
  • 1

    Alkalay RN, , von Stechow D, , Torres K, , Hassan S, , Sommerich R, & Zurakowski D: The effect of cement augmentation on the geometry and structural response of recovered osteopenic vertebrae: an anterior-wedge fracture model. Spine 33:16271636, 2008

    • Search Google Scholar
    • Export Citation
  • 2

    Ananthakrishnan D, , Berven S, , Deviren V, , Cheng K, , Lotz JC, & Xu Z, et al.: The effect on anterior column loading due to different vertebral augmentation techniques. Clin Biomech (Bristol, Avon) 20:2531, 2005

    • Search Google Scholar
    • Export Citation
  • 3

    Baroud G, , Nemes J, , Heini P, & Steffen T: Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 12:421426, 2003

    • Search Google Scholar
    • Export Citation
  • 4

    Berlemann U, , Ferguson SJ, , Nolte LP, & Heini PF: Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84:748752, 2002

    • Search Google Scholar
    • Export Citation
  • 5

    Brantigan JW, & Steffee AD: A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:21062107, 1993

    • Search Google Scholar
    • Export Citation
  • 6

    Burval DJ, , McLain RF, , Milks R, & Inceoglu S: Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine 32:10771083, 2007

    • Search Google Scholar
    • Export Citation
  • 7

    Chang MC, , Liu CL, & Chen TH: Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine 33:E317E324, 2008

    • Search Google Scholar
    • Export Citation
  • 8

    Cheh G, , Bridwell KH, , Lenke LG, , Buchowski JM, , Daubs MD, & Kim Y, et al.: Adjacent segment disease following lumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine 32:22532257, 2007

    • Search Google Scholar
    • Export Citation
  • 9

    Frankel BM, , D'Agostino S, & Wang C: A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine 7:4753, 2007

    • Search Google Scholar
    • Export Citation
  • 10

    Fransen P: Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant. Technical note and report of three cases. J Neurosurg Spine 7:366369, 2007

    • Search Google Scholar
    • Export Citation
  • 11

    Furtado N, , Oakland RJ, , Wilcox RK, & Hall RM: A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement. Spine 32:E480E487, 2007

    • Search Google Scholar
    • Export Citation
  • 12

    Halvorson TL, , Kelley LA, , Thomas KA, , Whitecloud TS III, & Cook SD: Effects of bone mineral density on pedicle screw fixation. Spine 19:24152420, 1994

    • Search Google Scholar
    • Export Citation
  • 13

    Heini PF: The current treatment—a survey of osteoporotic fracture treatment. Osteoporotic spine fractures: the spine surgeon's perspective. Osteoporos Int 16:Suppl 2 S85S92, 2005

    • Search Google Scholar
    • Export Citation
  • 14

    Jost B, , Cripton PA, , Lund T, , Oxland TR, , Lippuner K, & Jaeger P, et al.: Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132141, 1998

    • Search Google Scholar
    • Export Citation
  • 15

    Kim SH, , Kang HS, , Choi JA, & Ahn JM: Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol 45:440445, 2004

    • Search Google Scholar
    • Export Citation
  • 16

    Kim Y: Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Spine 32:25582568, 2007

    • Search Google Scholar
    • Export Citation
  • 17

    Lee DY, , Jung TG, & Lee SH: Single-level instrumented miniopen transforaminal lumbar interbody fusion in elderly patients. J Neurosurg Spine 9:137144, 2008

    • Search Google Scholar
    • Export Citation
  • 18

    Lin PM, , Cautilli RA, & Joyce MF: Posterior lumbar interbody fusion. Clin Orthop Relat Res 180:154168, 1983

  • 19

    Lund T, , Oxland TR, , Jost B, , Cripton P, , Grassmann S, & Etter C, et al.: Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80:351359, 1998

    • Search Google Scholar
    • Export Citation
  • 20

    McLain RF, , McKinley TO, , Yerby SA, , Smith TS, & Sarigul-Klijn N: The effect of bone quality on pedicle screw loading in axial instability. A synthetic model. Spine 22:14541460, 1997

    • Search Google Scholar
    • Export Citation
  • 21

    Min JH, , Jang JS, & Lee SH: Comparison of anterior- and posterior- approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine 7:2126, 2007

    • Search Google Scholar
    • Export Citation
  • 22

    Oakland RJ, , Furtado NR, , Wilcox RK, , Timothy J, & Hall RM: The biomechanical effectiveness of prophylactic vertebroplasty: a dynamic cadaveric study. J Neurosurg Spine 8:442449, 2008

    • Search Google Scholar
    • Export Citation
  • 23

    Oxland TR, , Lund T, , Jost B, , Cripton P, , Lippuner K, & Jaeger P, et al.: The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study. Spine 21:25582569, 1996

    • Search Google Scholar
    • Export Citation
  • 24

    Polikeit A, , Nolte LP, & Ferguson SJ: The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28:991996, 2003

    • Search Google Scholar
    • Export Citation
  • 25

    Shim CS, , Lee SH, , Shin HD, , Kang HS, , Choi WC, & Jung B, et al.: CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine 32:10121018, 2007

    • Search Google Scholar
    • Export Citation
  • 26

    Skinner R, , Maybee J, , Transfeldt E, , Venter R, & Chalmers W: Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine 15:195201, 1990

    • Search Google Scholar
    • Export Citation
  • 27

    Soshi S, , Shiba R, , Kondo H, & Murota K: An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16:13351341, 1991

    • Search Google Scholar
    • Export Citation
  • 28

    Sun K, & Liebschner MA: Biomechanics of prophylactic vertebral reinforcement. Spine 29:14281435, 2004

  • 29

    Tan JS, , Bailey CS, , Dvorak MF, , Fisher CG, , Cripton PA, & Oxland TR: Cement augmentation of vertebral screws enhances the interface strength between interbody device and vertebral body. Spine 32:334341, 2007

    • Search Google Scholar
    • Export Citation
  • 30

    Trout AT, , Kallmes DF, & Kaufmann TJ: New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol 27:217223, 2006

    • Search Google Scholar
    • Export Citation
  • 31

    Tsantrizos A, , Baramki HG, , Zeidman S, & Steffen T: Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine 25:18991907, 2000

    • Search Google Scholar
    • Export Citation
  • 32

    Uppin AA, , Hirsch JA, , Centenera LV, , Pfiefer BA, , Pazianos AG, & Choi IS: Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226:119124, 2003

    • Search Google Scholar
    • Export Citation
  • 33

    Weishaupt D, , Zanetti M, , Boos N, & Hodler J: MR imaging and CT in osteoarthritis of the lumbar facet joints. Skeletal Radiol 28:215219, 1999

    • Search Google Scholar
    • Export Citation
  • 34

    Wilcox RK: The biomechanical effect of vertebroplasty on the adjacent vertebral body: a finite element study. Proc Inst Mech Eng [H] 220:565572, 2006

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1157 191 22
Full Text Views 186 7 0
PDF Downloads 168 12 0
EPUB Downloads 0 0 0