Search Results

You are looking at 1 - 10 of 88 items for :

  • "diagnostic and operative techniques" x
Clear All
Restricted access

Wajd N. Al-Holou, Samuel W. Terman, Craig Kilburg, Hugh J. L. Garton, Karin M. Muraszko, William F. Chandler, Mohannad Ibrahim and Cormac O. Maher

Object

We reviewed our experience with pineal cysts to define the natural history and clinical relevance of this common intracranial finding.

Methods

The study population consisted of 48,417 consecutive patients who underwent brain MR imaging at a single institution over a 12-year interval and who were over 18 years of age at the time of imaging. Patient characteristics, including demographic data and other intracranial diagnoses, were collected from cases involving patients with a pineal cyst. We then identified all patients with pineal cysts who had been clinically evaluated at our institution and who had at least 6 months of clinical and imaging follow-up. All inclusion criteria for the natural history analysis were met in 151 patients.

Results

Pineal cysts measuring 5 mm or larger in greatest dimension were found in 478 patients (1.0%). Of these, 162 patients were male and 316 were female. On follow-up MR imaging of 151 patients with pineal cyst at a mean interval of 3.4 years from the initial study, 124 pineal cysts remained stable, 4 increased in size, and 23 decreased in size. Cysts that were larger at the time of initial diagnosis were more likely to decrease in size over the follow-up interval (p = 0.004). Patient sex, patient age at diagnosis, and the presence of septations within the cyst were not significantly associated with cyst change on follow-up.

Conclusions

Follow-up imaging and neurosurgical evaluation are not mandatory for adults with asymptomatic pineal cysts.

Full access

Bruce L. Tai, Anthony C. Wang, Jacob R. Joseph, Page I. Wang, Stephen E. Sullivan, Erin L. McKean, Albert J. Shih and Deborah M. Rooney

In this paper, the authors present a physical model developed to teach surgeons the requisite drilling techniques when using an endoscopic endonasal approach (EEA) to the skull base. EEA is increasingly used for treating pathologies of the ventral and ventrolateral cranial base. Endonasal drilling is a unique skill in terms of the instruments used, the long reach required, and the restricted angulation, and gaining competency requires much practice. Based on the successful experience in creating custom simulators, the authors used 3D printing to build an EEA training model from post-processed thin-cut head CT scans, formulating the materials to provide realistic haptic feedback and endoscope handling. They performed a preliminary assessment at 2 institutions to evaluate content validity of the simulator as the first step of the validation process. Overall results were positive, particularly in terms of bony landmarks and haptic response, though minor refinements were suggested prior to use as a training device.

Free access

Guo-chen Sun, Xiao-lei Chen, Yuan-zheng Hou, Xin-guang Yu, Xiao-dong Ma, Gang Liu, Lei Liu, Jia-shu Zhang, Hao Tang, Ru-Yuan Zhu, Ding-Biao Zhou and Bai-nan Xu

OBJECTIVE

Endoscopic removal of intracerebral hematomas is becoming increasingly common, but there is no standard technique. The authors explored the use of a simple image-guided endoscopic method for removal of spontaneous supratentorial hematomas.

METHODS

Virtual reality technology based on a hospital picture archiving and communications systems (PACS) was used in 3D hematoma visualization and surgical planning. Augmented reality based on an Android smartphone app, Sina neurosurgical assist, allowed a projection of the hematoma to be seen on the patient's scalp to facilitate selection of the best trajectory to the center of the hematoma. A obturator and transparent sheath were used to establish a working channel, and an endoscope and a metal suction apparatus were used to remove the hematoma.

RESULTS

A total of 25 patients were included in the study, including 18 with putamen hemorrhages and 7 with lobar cerebral hemorrhages. Virtual reality combined with augmented reality helped in achieving the desired position with the obturator and sheath. The median time from the initial surgical incision to completion of closure was 50 minutes (range 40–70 minutes). The actual endoscopic operating time was 30 (range 15–50) minutes. The median blood loss was 80 (range 40–150) ml. No patient experienced postoperative rebleeding. The average hematoma evacuation rate was 97%. The mean (± SD) preoperative Glasgow Coma Scale (GCS) score was 6.7 ± 3.2; 1 week after hematoma evacuation the mean GCS score had improved to 11.9 ± 3.1 (p < 0.01).

CONCLUSIONS

Virtual reality using hospital PACS and augmented reality with a smartphone app helped precisely localize hematomas and plan the appropriate endoscopic approach. A transparent sheath helped establish a surgical channel, and an endoscope enabled observation of the hematoma's location to achieve satisfactory hematoma removal.

Full access

Shunya Ohtaki, Yukinori Akiyama, Aya Kanno, Shouhei Noshiro, Tomo Hayase, Michiaki Yamakage and Nobuhiro Mikuni

OBJECTIVE

Motor evoked potentials (MEPs) are a critical indicator for monitoring motor function during neurological surgery. In this study, the influence of depth of anesthesia on MEP response was assessed.

METHODS

Twenty-eight patients with brain tumors who underwent awake craniotomy were included in this study. From a state of deep anesthesia until the awake state, MEP amplitude and latency were measured using 5-train electrical bipolar stimulations on the same site of the precentral gyrus each minute during the surgery. The depth of anesthesia was evaluated using the bispectral index (BIS). BIS levels were classified into 7 stages: < 40, and from 40 to 100 in groups of 10 each. MEP amplitude and latency of each stage were compared. The deviation of the MEP measurements, which was defined as a fluctuation from the average in every BIS stage, was also considered.

RESULTS

A total of 865 MEP waves in 28 cases were evaluated in this study. MEP amplitude was increased and latency was decreased in accordance with the increases in BIS level. The average MEP amplitudes in the > 90 BIS level was approximately 10 times higher than those in the < 40 BIS level. Furthermore, the average MEP latencies in the > 90 BIS level were 1.5–3.1 msec shorter than those in the < 60 BIS level. The deviation of measured MEP amplitudes in the > 90 BIS level was significantly stabilized in comparison with that in the < 60 BIS level.

CONCLUSIONS

MEP amplitude and latency were closely correlated with depth of anesthesia. In addition, the deviation in MEP amplitude was also correlated with depth of anesthesia, which was smaller during awake surgery (high BIS level) than during deep anesthesia. Therefore, MEP measurement would be more reliable in the awake state than under deep anesthesia.

Restricted access

Alejandro Fernández-Coello, Viktória Havas, Montserrat Juncadella, Joanna Sierpowska, Antoni Rodríguez-Fornells and Andreu Gabarrós

OBJECTIVE

Most knowledge regarding the anatomical organization of multilingualism is based on aphasiology and functional imaging studies. However, the results have still to be validated by the gold standard approach, namely electrical stimulation mapping (ESM) during awake neurosurgical procedures. In this ESM study the authors describe language representation in a highly specific group of 13 multilingual individuals, focusing on how age of acquisition may influence the cortical organization of language.

METHODS

Thirteen patients who had a high degree of proficiency in multiple languages and were harboring lesions within the dominant, left hemisphere underwent ESM while being operated on under awake conditions. Demographic and language data were recorded in relation to age of language acquisition (for native languages and early- and late-acquired languages), neuropsychological pre- and postoperative language testing, the number and location of language sites, and overlapping distribution in terms of language acquisition time. Lesion growth patterns and histopathological characteristics, location, and size were also recorded. The distribution of language sites was analyzed with respect to age of acquisition and overlap.

RESULTS

The functional language-related sites were distributed in the frontal (55%), temporal (29%), and parietal lobes (16%). The total number of native language sites was 47. Early-acquired languages (including native languages) were represented in 97 sites (55 overlapped) and late-acquired languages in 70 sites (45 overlapped). The overlapping distribution was 20% for early-early, 71% for early-late, and 9% for late-late. The average lesion size (maximum diameter) was 3.3 cm. There were 5 fast-growing and 7 slow-growing lesions.

CONCLUSIONS

Cortical language distribution in multilingual patients is not homogeneous, and it is influenced by age of acquisition. Early-acquired languages have a greater cortical representation than languages acquired later. The prevalent native and early-acquired languages are largely represented within the perisylvian left hemisphere frontoparietotemporal areas, and the less prevalent late-acquired languages are mostly overlapped with them.

Restricted access

Alejandro Fernández Coello, Sophie Duvaux, Alessandro De Benedictis, Ryosuke Matsuda and Hugues Duffau

Neural foundations underlying visual agnosia are poorly understood. The authors present the case of a patient who underwent awake surgery for a right basal temporooccipital low-grade glioma in which direct electrostimulation was used both at the cortical and subcortical level. Brain mapping over the inferior longitudinal fascicle generated contralateral visual hemiagnosia. These original findings are in agreement with recent tractography data that have confirmed the existence of an occipitotemporal pathway connecting occipital visual input to higher-level processing in temporal lobe structures. This is the first report of a true transient visual hemiagnosia elicited through electrostimulation, supporting the crucial role of inferior longitudinal fascicle in visual recognition.

Full access

Peter J. Grahn, Kendall H. Lee, Aimen Kasasbeh, Grant W. Mallory, Jan T. Hachmann, John R. Dube, Christopher J. Kimble, Darlene A. Lobel, Allan Bieber, Ju Ho Jeong, Kevin E. Bennet and J. Luis Lujan

OBJECT

Despite a promising outlook, existing intraspinal microstimulation (ISMS) techniques for restoring functional motor control after spinal cord injury are not yet suitable for use outside a controlled laboratory environment. Thus, successful application of ISMS therapy in humans will require the use of versatile chronic neurostimulation systems. The objective of this study was to establish proof of principle for wireless control of ISMS to evoke controlled motor function in a rodent model of complete spinal cord injury.

METHODS

The lumbar spinal cord in each of 17 fully anesthetized Sprague-Dawley rats was stimulated via ISMS electrodes to evoke hindlimb function. Nine subjects underwent complete surgical transection of the spinal cord at the T-4 level 7 days before stimulation. Targeting for both groups (spinalized and control) was performed under visual inspection via dorsal spinal cord landmarks such as the dorsal root entry zone and the dorsal median fissure. Teflon-insulated stimulating platinum-iridium microwire electrodes (50 μm in diameter, with a 30- to 60-μm exposed tip) were implanted within the ventral gray matter to an approximate depth of 1.8 mm. Electrode implantation was performed using a free-hand delivery technique (n = 12) or a Kopf spinal frame system (n = 5) to compare the efficacy of these 2 commonly used targeting techniques. Stimulation was controlled remotely using a wireless neurostimulation control system. Hindlimb movements evoked by stimulation were tracked via kinematic markers placed on the hips, knees, ankles, and paws. Postmortem fixation and staining of the spinal cord tissue were conducted to determine the final positions of the stimulating electrodes within the spinal cord tissue.

RESULTS

The results show that wireless ISMS was capable of evoking controlled and sustained activation of ankle, knee, and hip muscles in 90% of the spinalized rats (n = 9) and 100% of the healthy control rats (n = 8). No functional differences between movements evoked by either of the 2 targeting techniques were revealed. However, frame-based targeting required fewer electrode penetrations to evoke target movements.

CONCLUSIONS

Clinical restoration of functional movement via ISMS remains a distant goal. However, the technology presented herein represents the first step toward restoring functional independence for individuals with chronic spinal cord injury.

Free access

Marcos Dellaretti, Nicolas Reyns, Gustavo Touzet, François Dubois, Sebastião Gusmão, Júlio Leonardo Barbosa Pereira and Serge Blond

Object

Brainstem gliomas were regarded as a single entity prior to the advent of MRI; however, several studies investigating MRI have recognized that these lesions are a heterogeneous group, and certain subgroups have a better prognosis for long-term survival. The aim of this study was to conduct a retrospective analysis of prognostic factors of patients with brainstem gliomas confirmed by histopathological diagnosis, particularly regarding assessment of whether histological grade, age, and MRI findings are prognostic factors for patient survival.

Methods

The study evaluated 100 patients diagnosed with brainstem glioma. There were 63 adults (40 men and 23 women; age range 18–75 years, mean 41 years) and 37 children (19 boys and 18 girls; age range 2–12 years, mean 6.9 years).

Results

The mean overall survival of this population, measured from the date of biopsy, was 57 months for diffuse low-grade glioma and 13.8 months for diffuse high-grade glioma (p < 0.001). The mean survival among patients with nonenhancing contrast lesions on MRI was 54.2 months, whereas for patients with enhancing lesions, it was 21.7 months (p < 0.001). Comparisons between the Kaplan-Meier survival curves of adults and children revealed similar median survival periods of 25 and 16 months, respectively (p > 0.05). The multivariate analysis (Cox proportional hazards regression) revealed that only histological grade was a significant prognostic factor (p < 0.001).

Conclusions

The study revealed that histological grade and MRI features were significant prognostic factors for survival in these patients, but in multivariate analysis, only histological grade remained a significant factor.

Restricted access

Cheng-Mao Cheng, Akio Noguchi, Aclan Dogan, Gregory J. Anderson, Frank P. K. Hsu, Sean O. McMenomey and Johnny B. Delashaw Jr.

Object

This study was designed to determine if the “keyhole concept,” proposed by Perneczky's group, can be verified quantitatively.

Methods

Fourteen (3 bilateral and 8 unilateral) sides of embalmed latex-injected cadaveric heads were dissected via 3 sequential craniotomy approaches: supraorbital keyhole, frontotemporal pterional, and supraorbital. Three-dimensional cartesian coordinates were recorded using a stereotactic localizer. The orthocenter of the ipsilateral anterior clinoid process, the posterior clinoid process, and the contralateral anterior clinoid process are expressed as a center point (the apex). Seven vectors project from the apex to their corresponding target points in a radiating manner on the parasellar skull base. Each 2 neighboring vectors border what could be considered a triangle, and the total area of the 7 triangles sharing the same apex was geometrically expressed as the area of exposure in the parasellar region.

Results

Values are expressed as the mean ± SD (mm2). The total area of exposure was as follows: supraorbital keyhole 1733.1 ± 336.0, pterional 1699.3 ± 361.9, and supraorbital 1691.4 ± 342.4. The area of exposure on the contralateral side was as follows: supraorbital keyhole 602.2 ± 194.7, pterional 595.2 ± 228.0, and supraorbital 553.3 ± 227.2. The supraorbital keyhole skull flap was 2.0 cm2, and the skull flap size ratio was 1:5:6.5 (supraorbital keyhole/pterional/supraorbital).

Conclusions

The area of exposure of the parasellar region through the smaller supraorbital keyhole approach is as adequate as the larger pterional and supraorbital approaches. The keyhole concept can be verified quantitatively as follows: 1) a wide area of exposure on the skull base can be obtained through a small keyhole skull opening, and 2) the side opposite the opening can also be visualized.

Full access

Ehab Shiban, Sandro M. Krieg, Bernhard Haller, Niels Buchmann, Thomas Obermueller, Tobias Boeckh-Behrens, Maria Wostrack, Bernhard Meyer and Florian Ringel

OBJECT

Subcortical stimulation is a method used to evaluate the distance from the stimulation site to the corticospinal tract (CST) and to decide whether the resection of an adjacent lesion should be terminated to prevent damage to the CST. However, the correlation between stimulation intensity and distance to the CST has not yet been clearly assessed. The objective of this study was to investigate the appropriate correlation between the subcortical stimulation pattern and the distance to the CST.

METHODS

Monopolar subcortical motor evoked potential (MEP) mapping was performed in addition to continuous MEP monitoring in 37 consecutive patients with lesions located in motor-eloquent locations. The proximity of the resection cavity to the CST was identified by subcortical MEP mapping. At the end of resection, the point at which an MEP response was still measurable with minimal subcortical MEP intensity was marked with a titanium clip. At this location, different stimulation paradigms were executed with cathodal or anodal stimulation at 0.3-, 0.5-, and 0.7-msec pulse durations. Postoperatively, the distance between the CST as defined by postoperative diffusion tensor imaging fiber tracking and the titanium clip was measured. The correlation between this distance and the subcortical MEP electrical charge was calculated.

RESULTS

Subcortical MEP mapping was successful in all patients. There were no new permanent motor deficits. Transient new postoperative motor deficits were observed in 14% (5/36) of cases. Gross-total resection was achieved in 75% (27/36) and subtotal resection (> 80% of tumor mass) in 25% (9/36) of cases. Stimulation intensity with various pulse durations as well as current intensity was plotted against the measured distance between the CST and the titanium clip on postoperative MRI using diffusion-weighted imaging fiberitracking tractography. Correlational and regression analyses showed a nonlinear correlation between stimulation intensity and the distance to the CST. Cathodal stimulation appeared better suited for subcortical stimulation.

CONCLUSIONS

Subcortical MEP mapping is an excellent intraoperative method to determine the distance to the CST during resection of motor-eloquent lesions and is highly capable of further reducing the risk of a new neurological deficit.