Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Zhi Yao x
Clear All Modify Search
Full access

Pei-Sen Yao, Shu-Fa Zheng, Feng Wang, De-Zhi Kang and Yuan-Xiang Lin

OBJECTIVE

Using intraoperative electrocorticography (ECoG) to identify epileptogenic areas and improve postoperative seizure control in patients with low-grade gliomas (LGGs) remains inconclusive. In this study the authors retrospectively report on a surgery strategy that is based on intraoperative ECoG monitoring.

METHODS

A total of 108 patients with LGGs presenting at the onset of refractory seizures were included. Patients were divided into 2 groups. In Group I, all patients underwent gross-total resection (GTR) combined with resection of epilepsy areas guided by intraoperative ECoG, while patients in Group II underwent only GTR. Tumor location, tumor side, tumor size, seizure-onset features, seizure frequency, seizure duration, preoperative antiepileptic drug therapy, intraoperative electrophysiological monitoring, postoperative Engel class, and histological tumor type were compared between the 2 groups.

RESULTS

Univariate analysis demonstrated that tumor location and intraoperative ECoG monitoring correlated with seizure control. There were 30 temporal lobe tumors, 22 frontal lobe tumors, and 2 parietal lobe tumors in Group I, with 18, 24, and 12 tumors in those same lobes, respectively, in Group II (p < 0.05). In Group I, 74.07% of patients were completely seizure free (Engel Class I), while 38.89% in Group II (p < 0.05). In Group I, 96.30% of the patients achieved satisfactory postoperative seizure control (Engel Class I or II), compared with 77.78% in Group II (p < 0.05). Intraoperative ECoG monitoring indicated that in patients with temporal lobe tumors, most of the epileptic discharges (86.7%) were detected at the anterior part of the temporal lobe. In these patients with epilepsy discharges located at the anterior part of the temporal lobe, satisfactory postoperative seizure control (93.3%) was achieved after resection of the tumor and the anterior part of the temporal lobe.

CONCLUSIONS

Intraoperative ECoG monitoring provided the exact location of epileptogenic areas and significantly improved postoperative seizure control of LGGs. In patients with temporal lobe LGGs, resection of the anterior temporal lobe with epileptic discharges was sufficient to control seizures.

Full access

Jie Zhang, Dong-Xiao Zhuang, Cheng-Jun Yao, Ching-Po Lin, Tian-Liang Wang, Zhi-Yong Qin and Jin-Song Wu

OBJECT

The extent of resection is one of the most essential factors that influence the outcomes of glioma resection. However, conventional structural imaging has failed to accurately delineate glioma margins because of tumor cell infiltration. Three-dimensional proton MR spectroscopy (1H-MRS) can provide metabolic information and has been used in preoperative tumor differentiation, grading, and radiotherapy planning. Resection based on glioma metabolism information may provide for a more extensive resection and yield better outcomes for glioma patients. In this study, the authors attempt to integrate 3D 1H-MRS into neuronavigation and assess the feasibility and validity of metabolically based glioma resection.

METHODS

Choline (Cho)–N-acetylaspartate (NAA) index (CNI) maps were calculated and integrated into neuronavigation. The CNI thresholds were quantitatively analyzed and compared with structural MRI studies. Glioma resections were performed under 3D 1H-MRS guidance. Volumetric analyses were performed for metabolic and structural images from a low-grade glioma (LGG) group and high-grade glioma (HGG) group. Magnetic resonance imaging and neurological assessments were performed immediately after surgery and 1 year after tumor resection.

RESULTS

Fifteen eligible patients with primary cerebral gliomas were included in this study. Three-dimensional 1H-MRS maps were successfully coregistered with structural images and integrated into navigational system. Volumetric analyses showed that the differences between the metabolic volumes with different CNI thresholds were statistically significant (p < 0.05). For the LGG group, the differences between the structural and the metabolic volumes with CNI thresholds of 0.5 and 1.5 were statistically significant (p = 0.0005 and 0.0129, respectively). For the HGG group, the differences between the structural and metabolic volumes with CNI thresholds of 0.5 and 1.0 were statistically significant (p = 0.0027 and 0.0497, respectively). All patients showed no tumor progression at the 1-year follow-up.

CONCLUSIONS

This study integrated 3D MRS maps and intraoperative navigation for glioma margin delineation. Optimum CNI thresholds were applied for both LGGs and HGGs to achieve resection. The results indicated that 3D 1H-MRS can be integrated with structural imaging to provide better outcomes for glioma resection.

Free access

Liang-Hua Ma, Guang Li, Hong-Wei Zhang, Zhi-Yu Wang, Jun Dang, Shuo Zhang, Lei Yao and Xiao-Meng Zhang

Object

This study was undertaken to analyze outcomes in patients with newly diagnosed brain metastases from non–small cell lung cancer (NSCLC) who were treated with hypofractionated stereotactic radiotherapy (HSRT) with or without whole-brain radiotherapy (WBRT).

Methods

One hundred seventy-one patients comprised the study population. Fifty-four patients received HSRT alone, and 117 patients received both HSRT and WBRT. The median survival time (MST) was determined using the Kaplan-Meier method. Recursive Partitioning Analysis (RPA) and Graded Prognostic Assessment (GPA) were also used to evaluate the results. Univariate and multivariate analyses were performed to determine significant prognostic factors for overall survival. Tumor control, radiation toxicity, and cause of death in the HSRT and HSRT+WBRT groups were evaluated.

Results

The MST for all patients was 13 months. According to the Kaplan-Meier method, the probability of survival at 1, 2, and 3 years was 51.2%, 21.7%, and 10.1%. The MSTs for RPA Classes I, II, and III were 19, 12, and 5 months, respectively; and the MSTs for GPA Scores 4, 3, 2, and 1 were 24, 14, 12, and 6 months, respectively. The MSTs in the HSRT+WBRT and HSRT groups were 13 and 9 months (p = 0.044), respectively, for all patients, 13 and 8 months (p = 0.031), respectively, for patients with multiple brain metastases, and 16 and 15 months (p = 0.261), respectively, for patients with a single brain metastasis. The multivariate analysis showed that HSRT+WBRT was a significant factor only for patients with multiple brain metastases (p = 0.010). The Kaplan-Meier–estimated tumor control rates at 3, 6, 9, and 12 months were 92.2%, 82.7%, 79.5%, and 68.3% in the HSRT+WBRT group and 73.5%, 58.4%, 51.0%, and 43.3% in the HSRT group, respectively, in all 165 patients (p = 0.001). The estimated tumor control rates at 3, 6, 9, and 12 months were 94.3%, 81.9%, 79.6%, and 76.7%, respectively, in the HSRT+WBRT group and 77.8%, 61.4%, 52.6%, and 48.2%, respectively, in the HSRT group in the 80 patients harboring a single metastasis (p = 0.009). The estimated tumor control rates at 3, 6, 9, and 12 months were 90.5%, 83.5%, 79.5%, and 60.9%, respectively, in the HSRT+WBRT group and 68.2%, 54.5%, 48.5%, and 36.4%, respectively, in the HSRT group in the 85 patients with multiple metastases (p = 0.010). The toxicity incidences of Grade 3 or worse were 6.0% (7 of 117 patients) in the HSRT+WBRT group and 1.9% (1 of 54 patients) in the HSRT group (p = 0.438). The differences in neurological death rates between the HSRT+WBRT group and the HSRT group were not statistically significant (34.4% vs 44.7%, p = 0.125, in all patients; 30.0% vs 52.0%, p = 0.114, in patients with a single metastasis; and 38.0% vs 36.4%, p = 0.397, in patients with multiple metastases).

Conclusions

The overall survival results in the present study were similar to those in other studies. Hypofractionated stereotactic radiotherapy provides an alternative method to traditional stereotactic radiosurgery. We suggest that WBRT should be combined with HSRT in patients with single or multiple newly diagnosed brain metastases from NSCLC.

Full access

Xin Zhang, Tamrakar Karuna, Zhi-Qiang Yao, Chuan-Zhi Duan, Xue-Min Wang, Shun-Ting Jiang, Xi-Feng Li, Jia-He Yin, Xu-Ying He, Shen-Quan Guo, Yun-Chang Chen, Wen-Chao Liu, Ran Li and Hai-Yan Fan

OBJECTIVE

Among clinical and morphological criteria, hemodynamics is the main predictor of aneurysm growth and rupture. This study aimed to identify which hemodynamic parameter in the parent artery could independently predict the rupture of anterior communicating artery (ACoA) aneurysms by using multivariate logistic regression and two-piecewise linear regression models. An additional objective was to look for a more simplified and convenient alternative to the widely used computational fluid dynamics (CFD) techniques to detect wall shear stress (WSS) as a screening tool for predicting the risk of aneurysm rupture during the follow-up of patients who did not undergo embolization or surgery.

METHODS

One hundred sixty-two patients harboring ACoA aneurysms (130 ruptured and 32 unruptured) confirmed by 3D digital subtraction angiography at three centers were selected for this study. Morphological and hemodynamic parameters were evaluated for significance with respect to aneurysm rupture. Local hemodynamic parameters were obtained by MR angiography and transcranial color-coded duplex sonography to calculate WSS magnitude. Multivariate logistic regression and a two-piecewise linear regression analysis were performed to identify which hemodynamic parameter independently characterizes the rupture status of ACoA aneurysms.

RESULTS

Univariate analysis showed that WSS (p < 0.001), circumferential wall tension (p = 0.005), age (p < 0.001), the angle between the A1 and A2 segments of the anterior cerebral artery (p < 0.001), size ratio (p = 0.023), aneurysm angle (p < 0.001), irregular shape (p = 0.005), and hypertension (grade II) (p = 0.006) were significant parameters. Multivariate analyses showed significant association between WSS in the parent artery and ACoA aneurysm rupture (p = 0.0001). WSS magnitude, evaluated by a two-piecewise linear regression model, was significantly correlated with the rupture of the ACoA aneurysm when the magnitude was higher than 12.3 dyne/cm2 (HR 7.2, 95% CI 1.5–33.6, p = 0.013).

CONCLUSIONS

WSS in the parent artery may be one of the reliable hemodynamic parameters characterizing the rupture status of ACoA aneurysms when the WSS magnitude is higher than 12.3 dyne/cm2. Analysis showed that with each additional unit of WSS (even with a 1-unit increase of WSS), there was a 6.2-fold increase in the risk of rupture for ACoA aneurysms.

Restricted access

Fu-Lin He, Shuai Qiu, Jian-Long Zou, Fan-Bin Gu, Zhi Yao, Zhe-Hui Tu, Yuan-Yuan Wang, Xiao-Lin Liu, Li-Hua Zhou and Qing-Tang Zhu

OBJECTIVE

Neuropathic pain caused by traumatic neuromas is an extremely intractable clinical problem. Disorderly scar tissue accumulation and irregular and immature axon regeneration around the injury site mainly contribute to traumatic painful neuroma formation. Therefore, successfully preventing traumatic painful neuroma formation requires the effective inhibition of irregular axon regeneration and disorderly accumulation of scar tissue. Considering that chondroitin sulfate proteoglycans (CSPGs) can act on the growth cone and effectively inhibit axon regeneration, the authors designed and manufactured a CSPG-gelatin blocker to regulate the CSPGs’ spatial distribution artificially and applied it in a rat model after sciatic nerve neurectomy to evaluate its effects in preventing traumatic painful neuroma formation.

METHODS

Sixty female Sprague Dawley rats were randomly divided into three groups (positive group: no covering; blank group: covering with gelatin blocker; and CSPG group: covering with the CSPG-gelatin blocker). Pain-related factors were evaluated 2 and 8 weeks postoperatively (n = 30). Neuroma growth, autotomy behavior, and histological features of the neuromas were assessed 8 weeks postoperatively (n = 30).

RESULTS

Eight weeks postoperatively, typical bulb-shaped neuromas did not form in the CSPG group, and autotomy behavior was obviously better in the CSPG group (p < 0.01) than in the other two groups. Also, in the CSPG group the regenerated axons showed a lower density and more regular and improved myelination (p < 0.01). Additionally, the distribution and density of collagenous fibers and the expression of α–smooth muscle actin were significantly lower in the CSPG group than in the positive group (p < 0.01). Regarding pain-related factors, c-fos, substance P, interleukin (IL)–17, and IL-1β levels were significantly lower in the CSPG group than those in the positive and blank groups 2 weeks postoperatively (p < 0.05), while substance P and IL-17 remained lower in the CSPG group 8 weeks postoperatively (p < 0.05).

CONCLUSIONS

The authors found that CSPGs loaded in a gelatin blocker can prevent traumatic neuroma formation and effectively relieve pain symptoms after sciatic nerve neurotomy by blocking irregular axon regeneration and disorderly collagenous fiber accumulation in the proximal nerve stump. These results indicate that covering the proximal nerve stump with CSPGs may be a new and promising strategy to prevent traumatic painful neuroma formation in the clinical setting.

Restricted access

Bing Zhao, Yu-Kui Wei, Gui-Lin Li, Yong-Ning Li, Yong Yao, Jun Kang, Wen-Bin Ma, Yi Yang and Ren-Zhi Wang

Object

The standard transsphenoidal approach has been successfully used to resect most pituitary adenomas. However, as a result of the limited exposure provided by this procedure, complete surgical removal of pituitary adenomas with parasellar or retrosellar extension remains problematic. By additional bone removal of the cranial base, the extended transsphenoidal approach provides better exposure to the parasellar and clival region compared with the standard approach. The authors describe their surgical experience with the extended transsphenoidal approach to remove pituitary adenomas invading the anterior cranial base, cavernous sinus (CS), and clivus.

Methods

Retrospective analysis was performed in 126 patients with pituitary adenomas that were surgically treated via the extended transsphenoidal approach between September 1999 and March 2008. There were 55 male and 71 female patients with a mean age of 43.4 years (range 12–75 years). There were 82 cases of macroadenoma and 44 cases of giant adenoma.

Results

Gross-total resection was achieved in 78 patients (61.9%), subtotal resection in 43 (34.1%), and partial resection in 5 (4%). Postoperative complications included transient cerebrospinal rhinorrhea (7 cases), incomplete cranial nerve palsy (5), panhypopituitarism (5), internal carotid artery injury (2), monocular blindness (2), permanent diabetes insipidus (1), and perforation of the nasal septum (2). No intraoperative or postoperative death was observed.

Conclusions

The extended transsphenoidal approach provides excellent exposure to pituitary adenomas invading the anterior cranial base, CS, and clivus. This approach enhances the degree of tumor resection and keeps postoperative complications relatively low. However, radical resection of tumors that are firm, highly invasive to the CS, or invading multidirectionally remains a big challenge. This procedure not only allows better visualization of the tumor and the neurovascular structures but also provides significant working space under the microscope, which facilitates intraoperative manipulation. Preoperative imaging studies and new techniques such as the neuronavigation system and the endoscope improve the efficacy and safety of tumor resection.

Full access

Yi-Syuan Li, Chun-Yu Chen, Chi-Hui Chen, Zhi-Kang Yao, Yu-Hsiang Sung, Kai-Cheng Lin, Yih-Wen Tarng, Chien-Jen Hsu and Jenn-Huei Renn