Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Young-Soo Park x
  • All content x
Clear All Modify Search
Restricted access

Sung Hun Park, Woo Min Park, Cheul Woong Park, Kwan Soo Kang, Young Keun Lee, and Sang Rak Lim

Object

The purpose of this study was to determine whether anterior lumbar interbody fusion (ALIF) followed by percutaneous translaminar facet screw fixation is effective in elderly patients with degenerative spinal disease.

Methods

Twenty-nine patients > 60 years old who underwent ALIF with percutaneous translaminar facet screw fixation from January to June 2004 were studied. The radiological and clinical data of these patients were collected and analyzed. The mean follow-up period was 14.6 months (range 12–17 months).

Results

The mean preoperative, immediate postoperative, and 6- and 12-month postoperative posterior disc heights were 7.1, 11.6, 9.8, and 9.8 mm, respectively. Subsidences of posterior disc height > 20% developed in 9 patients (30%). The significant risk factor for subsidence was found to be 2-level operations (p = 0.023). The mean preoperative Oswestry Disability Index score and visual analog scale scores for the back and leg were 24.4, 6.6, and 7.5, respectively, and improved postoperatively to 14.2, 1.5, and 1.8, respectively.

Conclusions

Minimally invasive ALIF followed by percutaneous translaminar facet screw fixation was performed as a minimally invasive surgical technique in elderly patients. However, in certain circumstances such as multilevel operations or in patients with severe osteoporosis, significant cage subsidence can develop.

Restricted access

Tsunenori Takatani, Yasushi Motoyama, Young-Soo Park, Taekyun Kim, Hironobu Hayashi, Ichiro Nakagawa, Masahiko Kawaguchi, and Hiroyuki Nakase

OBJECTIVE

Reportedly, tetanic stimulation prior to transcranial electrical stimulation (TES) facilitates elicitation of motor evoked potentials (MEPs) by a mechanism involving increased corticomotoneuronal excitability in response to somatosensory input. However, the posttetanic MEP following stimulation of a pure sensory nerve has never been reported. Furthermore, no previous reports have described posttetanic MEPs in pediatric patients. The aim of this study was to investigate the efficacy of posttetanic MEPs in pediatric neurosurgery patients and to compare the effects on posttetanic MEP after tetanic stimulation of the sensory branch of the pudendal nerve versus the standard median and tibial nerves, which contain a mixture of sensory and motor fibers.

METHODS

In 31 consecutive pediatric patients with a mean age of 6.0 ± 5.1 years who underwent lumbosacral surgery, MEPs were elicited by TES without tetanic stimulation (conventional MEPs [c-MEPs]) and following tetanic stimulation of the unilateral median and tibial nerves (mt-MEPs) and the sensory branch of the pudendal nerve (p-MEP). Compound muscle action potentials were elicited from abductor pollicis brevis (APB), gastrocnemius (Gc), tibialis anterior (TA), and adductor hallucis (AH) muscles. The success rate of monitoring each MEP and the increases in the ratios of mt-MEP and p-MEP to c-MEP were investigated.

RESULTS

The success rate of monitoring p-MEPs was higher than those of mt-MEPs and c-MEPs (87.5%, 72.6%, and 63.3%, respectively; p < 0.01, adjusted by Bonferroni correction). The mean increase in the ratio of p-MEP to c-MEP for all muscles was significantly higher than that of mt-MEP to c-MEP (3.64 ± 4.03 vs 1.98 ± 2.23, p < 0.01). Subanalysis of individual muscles demonstrated significant differences in the increases in the ratios between p-MEP and mt-MEP in the APB bilaterally, as well as ipsilateral Gc, contralateral TA, and bilateral AH muscles.

CONCLUSIONS

Tetanic stimulation prior to TES can augment the amplitude of MEPs during pediatric neurosurgery, the effect being larger with pudendal nerve stimulation than tetanic stimulation of the unilateral median and tibial nerves. TES elicitation of p-MEPs might be useful in pediatric patients in whom it is difficult to elicit c-MEPs.

Restricted access

Yoon Ha, Young Soo Kim, Jin Mo Cho, Seung Hwan Yoon, So Ra Park, Do Heum Yoon, Eun Young Kim, and Hyung Chun Park

Object. Granulocyte—macrophage colony—stimulating factor (GM-CSF) is a potent hemopoietic cytokine that stimulates stem cell proliferation in the bone marrow and inhibits apoptotic cell death in leukocytes. Its effects in the central nervous system, however, are still unclear. The present study was undertaken to determine if GM-CSF can rescue neuronal cells from apoptosis and improve neurological function in a spinal cord injury (SCI) model.

Methods. To study the effect of GM-CSF on apoptotic neuronal death, the authors used a staurosporine-induced neuronal death model in an N2A cell line (in vitro) and in a rat SCI model (in vivo). The N2A cells were preincubated with GM-CSF for 60 minutes before being exposed to staurosporine for 24 hours. To inhibit GM-CSF, N2A cells were pretreated with antibodies against the GM-CSF receptor for 60 minutes. Clip compression was used to induce SCI. Animals were treated with daily doses of GM-CSF (20 µg/day) for 5 days. The number of apoptotic cells in the spinal cord and neurological improvements were assessed.

Pretreatment with GM-CSF was found to protect N2A cells significantly from apoptosis, and neutralizing antibodies for the GM-CSF receptors inhibited the rescuing effect of GM-CSF on apoptosis. In the rat SCI model, neurological function improved significantly in the GM-CSF—treated group compared with controls treated with phosphate-buffered saline. Terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling staining showed that GM-CSF administration reduced apoptosis in the injured spinal cord.

Conclusions. Treatment of SCI with GM-CSF showed beneficial effects. Neuronal protection against apoptosis is viewed as a likely mechanism underlying the therapeutic effect of GM-CSF in SCI.

Restricted access

Pil-Woo Huh, Do-Sung Yoo, Kyung-Suok Cho, Chun-Kun Park, Seok-Gu Kang, Young-Sup Park, Dal-Soo Kim, and Moon-Chan Kim

Object

The various terms used to describe subdural fluid collection—“external hydrocephalus,” “subdural hygroma,” “subdural effusion,” “benign subdural collection,” and “extraventricular obstructive hydrocephalus”—reflect the confusion surrounding the diagnoses of these diseases. Differentiating external hydrocephalus from simple subdural hygroma may be difficult, but the former appears to be a distinct clinical entity separate from the latter. In this report, the authors present a diagnostic method for differentiating external hydrocephalus from simple subdural hygroma, based on their clinical experience in treating subdural fluid collection after mild head trauma.

Methods

Twenty patients with subdural fluid collection after mild head trauma were included in this study. Ventricle size was measured using a modified frontal horn index (mFHI); that is, the largest width of the frontal horns divided by the bicortical distance in the same plane, instead of the inner table distance. Bur hole trephination was performed on the appearance of a subdural fluid collection thicker than 15 mm on computed tomography (CT), persistent (longer than 4 weeks) or increasing in size, and accompanied by neurological symptoms (confusion or memory impairment). During the procedure, subdural pressure was measured using a manometer before opening the dura mater. Subdural pressure varied among the patients, ranging from 3 to 27.5 cm H2O. Four patients with a subdural pressure greater than 15 cm H2O had hydrocephalus after surgery (p < 0.05). Hydrocephalus developed in a pediatric patient (2 years old) with a subdural pressure of 12 cm H2O. All of the patients in whom hydrocephalus developed after bur hole trephination had had enlarged ventricles (mFHI > 33%) on preoperative CT scans.

Conclusions

Monitoring subdural pressure may be a valuable tool for differentiating subdural hygroma from external hydrocephalus in patients with mild head trauma. Additionally, the mFHI reflects the nature of the subdural collection more accurately than the standard frontal horn index.

Full access

Young-Soo Kim, Ho-Yeol Zhang, Byung-Jin Moon, Kyung-Woo Park, Kyu-Yeul Ji, Won-Chang Lee, Kyu-Sung Oh, Gwon-Ui Ryu, and Daniel H. Kim

Object

The purpose of this study was to analyze the usefulness of the BioFlex, a Nitinol spring rod dynamic stabilization system, and the Nitinol shape memory loop (KIMPF-DI Fixing System) as a posterior dynamic stabilization system in surgery for low-back pain.

Methods

The 103 patients who underwent treatment with the BioFlex system were divided into two groups: Group 1, dynamic stabilization with or without posterior lumbar interbody fusion (PLIF); and Group 2, rigid fixation (PLIF + BioFlex system only). A total of 66 segments were treated with only the BioFlex system; in these the preoperative range of motion (ROM) was 10.0 ± 4.3°, which changed to 4.1 ± 1.9° after surgery. Adjacent-segment ROM changed from 8.4 ± 3.4° to 10.7 ± 3.2° in Group 1 and from 6.5 ± 3.2° to 10.5 ± 4.6° in Group 2 postoperatively. A total of 110 segments received both BioFlex and PLIF, with a fusion rate of 90.0%. The visual analog scale score for back pain improved from 7.3 ± 3.1 to 1.4 ± 1.8 in Group 1 and from 7.4 ± 2.4 to 2.1 ± 2.3 in Group 2. The Oswestry Disability Index improved from 35.2 ± 6.4 to 12.1 ± 4.5 in Group 1 and from 37.8 ± 5.7 to 13.6 ± 4.2 in Group 2. (The ROM and assessment scores expressed are the mean ± standard deviation.)

The 194 patients in whom Nitinol memory loops were implanted were analyzed based on the preoperative and 1-year postoperative ROM of each lumbar segment. The change of ROM in looped segments treated with PLIF was significantly reduced, but the change of ROM in looped segments without PLIF was not significant. The change of ROM at the segment adjacent to the loop was not significant, and the change of kyphosis reflected a slight recovery.

Conclusions

The Nitinol BioFlex dynamic stabilization system can achieve stabilization and simultaneously allow physiological movement, which can in turn decrease the degeneration of adjacent segments. When used with PLIF, the fusion rate can be expected to increase. The flexible Nitinol shape memory loop, a posterior dynamic stabilization device, is an adequate tension band that displays strength similar to the posterior ligamentous structures. In combination with PLIF at the main lesion, the BioFlex system or the Nitinol memory loop can provide posterior dynamic stabilization to the transitional upper or lower segments, enhance the fusion rate, reduce the adjacent-segment degeneration, and provide dynamic stabilization of the spine.

Restricted access

Young Seok Park, Yun Ho Lee, Kyu-Won Shim, Dong-Seok Kim, Joon Soo Lee, and Heung Dong Kim

The authors report on a case of juvenile pilocytic astrocytoma (JPA) and concomitant hypothalamic hamartoma (HH) with gelastic epilepsy that was successfully treated with endoscopic disconnection. This 6-year-old girl presented with prolonged, medically intractable gelastic seizures that were often followed by generalized tonic seizures. An enhancing, low-grade hypothalamic tumor was identified on MR images obtained when she was 11 months old, but no surgical intervention was attempted at that time apart from bur hole drainage of a chronic subdural hemorrhage. In the first surgery, performed when she was 6 years of age, the authors attempted disconnection and tumor sampling; the lesion was revealed to be a JPA. A second endoscopic disconnection was performed 1 year later to improve seizure control and obtain a pathological specimen from the nonenhancing contralateral side. The pathological results after the second surgery revealed that the enhancing mass was a spontaneously regressing JPA and the contralateral nonenhancing mass was an HH. The HH was found as latent tumor and the JPA was the mass causing gelastic epilepsy. To the authors' knowledge, this is the first report of a patient with a spontaneously regressing JPA and concomitant HH, both of which were treated by endoscopic disconnection.

Full access

Yong-Jun Cho, Chi Hern Lee, Dae Won Kim, Ki-Yeon Yoo, Won Sik Eum, Min Jea Shin, Hyo Sang Jo, Jinseu Park, Kyu Hyung Han, Keun Wook Lee, and Soo Young Choi

The authors investigated the effects of a silk solution against laminectomy-induced dural adhesion formation and inflammation in a rat model. They found that it significantly reduced postlaminectomy dural adhesion formation and inflammation. Dural adhesion formation, thought to be an inevitable consequence of laminectomy, is one of the most common complications following spinal surgery, and the authors' results indicate that the silk solution might be a potential novel therapeutic agent for dural adhesion formation.

Restricted access

Kyung-Ho Park, Jaeho Lee, Chul-Gyu Yoo, Young Whan Kim, Sung Koo Han, Young-Soo Shim, Seung-Ki Kim, Kyu-Chang Wang, Byung-Kyu Cho, and Choon-Taek Lee

Object. Malignant glioma could be an ideal candidate for local gene therapy because its invasion is local and it has little metastatic potential. A low expression level and high degradation activity of p27 are known to constitute an independent poor prognostic factor in patients with malignant glioma. In this study, the authors investigated the roles of wild-type p27 and mutant p27 on the treatment of malignant glioma.

Methods. The authors used two adenoviruses: one expressed wild-type p27 (ad-p27wt) and the other, containing a mutation at the major metabolic site, expressed mutant p27 (ad-p27mt). The antitumor effects of the two adenoviruses were compared with respect to cell growth arrest, cell cycle alteration, apoptosis induction, and in vitro tumorigenicity in three glioblastoma mutiforme (GBM) cell lines and in a primary GBM cell line. Transduction with ad-p27wt or ad-p27mt induced the production of p27 and the dephosphorylation of pRB. The protein level of mutant p27 was significantly higher than that of wild-type p27. The ad-p27wt induced cell cycle arrest at the G1—S transition point, whereas the ad-p27mt induced arrest at the G2—M point. Both ad-p27wt and ad-p27mt induced a growth-inhibiting effect, apoptosis, and suppression of in vitro tumorigenicity; however, ad-p27mt displayed a stronger antitumor effect than ad-p27wt in brain tumor cell lines.

Conclusions. Gene therapy involving p27, especially mutant p27, has the potential to become a novel and powerful therapy for malignant glioma.

Restricted access

Min Young Kim, Ji Hyeon Park, Na Ree Kang, Hye Ryoun Jang, Jung Eun Lee, Wooseong Huh, Yoon-Goo Kim, Dae Joong Kim, Seung-Chyul Hong, Jong-Soo Kim, and Ha Young Oh

Object

Mannitol, an osmotic agent used to decrease intracranial pressure, can cause acute kidney injury (AKI). The objectives of this study were to assess the impact of mannitol on the incidence and severity of AKI and to identify risk factors and outcome for AKI in patients with intracranial hemorrhage (ICH).

Methods

The authors retrospectively evaluated 153 adult patients who received mannitol infusion after ICH between January 2005 and December 2009 in the neurosurgical intensive care unit. Multivariate analysis was used to evaluate the risk factors for AKI after ICH. Based on the odds ratio, weighted scores were assigned to predictors of AKI.

Results

The overall incidence of AKI among study participants was 10.5% (n = 16). Acute kidney injury occurred more frequently in patients who received mannitol infusion at a rate ≥ 1.34 g/kg/day than it did in patients who received mannitol infusion at a rate < 1.34 g/kg/day. A higher mannitol infusion rate was associated with more severe AKI. Independent risk factors for AKI were mannitol infusion rate ≥ 1.34 g/kg/day, age ≥ 70 years, diastolic blood pressure (DBP) ≥ 110 mm Hg, and glomerular filtration rate < 60 ml/min/1.73 m2. The authors developed a risk model for AKI, wherein patients with a higher risk score showed a graded association with a higher incidence of AKI.

Conclusions

The incidence of AKI following mannitol infusion in patients with ICH was 10.5%. A higher mannitol infusion rate was associated with more frequent and more severe AKI. Additionally, age ≥ 70 years, DBP ≥ 110 mm Hg, and established renal dysfunction before starting mannitol therapy were associated with development of AKI.

Restricted access

Dae Won Kim, Won Sik Eum, Sang Ho Jang, Jinseu Park, Dong-Hwa Heo, Seung-Hoon Sheen, Hae-Ran Lee, Haeyong Kweon, Seok-Woo Kang, Kwang-Gill Lee, Se Youn Cho, Hyoung-Joon Jin, Yong-Jun Cho, and Soo Young Choi

Object

To improve the safety of dura repair in neurosurgical procedures, a new dural material derived from silk fibroin was evaluated in a rat model with a dura mater injury.

Methods

The authors prepared new, transparent, artificial dura mater material using silk fibroin from the silkworm, Bombyx mori. The cytotoxic and antiinflammatory effects of the artificial dura mater were examined in vitro and in vivo by histological examination, western blotting, and reverse transcription polymerase chain reaction analyses.

Results

The novel artificial dura mater was not cytotoxic. However, it efficiently reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase expression as well as the expression of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor–α. Cerebrospinal fluid leakage did not occur after repair of the brain of craniotomized rats with the artificial dura mater material.

Conclusions

The new artificial dura mater described in this study appears to be safe for application in neurosurgical procedures and can efficiently inhibit inflammation without side effects or CSF leakage. Although the long-term effects of this artificial dura mater material need to be validated in larger animals, the results from this study indicate that it is suitable for application in neurosurgery.