Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Yoshiyuki Yato x
Clear All Modify Search
Free access

Keitaro Matsukawa and Yoshiyuki Yato

OBJECTIVE

Most surgeons are forced to turn their heads away from the surgical field to see various intraoperative support monitors. These movements may result in inconvenience to surgeons and lead to technical difficulties and potential errors. Wearable devices that can be attached to smart glasses or any glasses are novel visualization tools providing an alternative screen in front of the user’s eyes, allowing surgeons to keep their attention focused on the operative task without taking their eyes off the surgical field. The aim of the present study was to examine the feasibility of using glasses equipped with a wearable display device that transmits display monitor data during fluoroscopically guided minimally invasive spinal instrumentation surgery.

METHODS

In this pilot prospective randomized study, 20 consecutively enrolled patients who underwent single-segment posterior lumbar interbody fusion (PLIF) at L5–S1 performed using the percutaneous pedicle screw technique were randomly divided into two groups, a group for which the surgeon used a wearable display device attached to regular glasses while performing surgery (smart glasses group) and a group for which the surgeon did not use such a device (nonglasses group). Real-time intraoperative fluoroscopic images were wirelessly transmitted to the display device attached to the surgeon’s glasses. The number of head turns performed by the surgeon to view the standard fluoroscopic monitor during procedures and the operative time, estimated blood loss, radiation exposure time, screw placement accuracy, and intraoperative complication rate were evaluated for comparison between the two groups.

RESULTS

The number of surgeon head turns to view the fluoroscopic monitor in the smart glasses group was 0.10 ± 0.31 times, which was significantly fewer than the head turns in the nonglasses group (82.4 ± 32.5 times; p < 0.001). The operative and radiation exposure times in the smart glasses group were shorter than those in the nonglasses group (operative time 100.2 ± 10.4 vs 105.5 ± 14.6 minutes, radiation exposure time 38.6 ± 6.6 vs 41.8 ± 16.1 seconds, respectively), although the differences were not significant. Postoperative CT showed one screw perforation in the nonglasses group, and no intraoperative complications were observed in either group.

CONCLUSIONS

This is, to the authors’ knowledge, the first report on the feasibility of using this wearable display device attached to glasses for fluoroscopically guided minimally invasive spinal instrumentation surgery. Smart glasses display devices such as this one may be a valid option to facilitate better concentration on operative tasks by improving ergonomic efficiency during surgery.

Full access

Tateru Shiraishi and Yoshiyuki Yato

To prevent the occurrence of postoperative cervical malalignment, which is often a complication of conventional axial laminectomy or laminoplasty, the authors developed a new double-door laminoplasty procedure in which the C-2 spinal canal is expanded while all the muscular attachments to each split half of the spinous process remain undisturbed. In conjunction with laminoplasties at other levels, this procedure was performed in five patients with ossification of the posterior longitudinal ligament and cervical myelopathy. Neurological improvement was demonstrated in each patient, and there was no radiological evidence of cervical malalignment. The technique for this procedure is described and its usefulness in preventing postoperative spinal malalignment is discussed.

Restricted access

Keitaro Matsukawa, Takashi Kato, Ralph Mobbs, Yoshiyuki Yato and Takashi Asazuma

OBJECTIVE

Lumbosacral fixation plays an important role in the management of devastating spinal pathologies, including osteoporosis, fracture, infection, tumor resection, and spinal deformities, which require long-segment fusion constructs to the sacrum. The sacral-alar-iliac (SAI) screw technique has been developed as a promising solution to facilitate both minimal invasiveness and strong fixation. The rationale for SAI screw insertion is a medialized entry point away from the ilium and in line with cranial screws. The divergent screw path of the cortical bone trajectory (CBT) provides a higher amount of cortical bone purchase and strong screw fixation and has the potential to harmoniously align with SAI screws due to its medial starting point. However, there has been no report on the combination of these two techniques. The objective of this study was to assess the feasibility of this combination technique.

METHODS

The subjects consisted of 17 consecutive patients with a mean age of 74.2 ± 4.7 years who underwent posterior lumbosacral fixation for degenerative spinal pathologies using the combination of SAI and CBT fixation techniques. There were 8 patients with degenerative scoliosis, 7 with degenerative kyphosis, 1 with an osteoporotic vertebral fracture at L5, and 1 with vertebral metastasis at L5. Fusion zones included T10–sacrum in 13 patients, L2–sacrum in 2, and L4–sacrum in 2.

RESULTS

No patients required complicated rod bending or the use of a connector for rod assembly in the lumbosacral region. Postoperative CT performed within a week after surgery showed that all lumbosacral screws were in correct positions and there was no incidence of neurovascular injuries. The lumbosacral bone fusion was confirmed in 81.8% of patients at 1-year follow-up based on fine-cut CT scanning. No patient showed a significant loss of spinal alignment or rod fracture in the lumbosacral transitional region.

CONCLUSIONS

This is the first paper on the feasibility of a combination technique using SAI and CBT screws. This technique could be a valid option for lumbosacral fixation due to the ease of rod placement with potential reductions in operative time and blood loss.

Full access

Keitaro Matsukawa, Yoshiyuki Yato, Hideaki Imabayashi, Naobumi Hosogane, Takashi Asazuma and Koichi Nemoto

OBJECT

Cortical bone trajectory (CBT) maximizes thread contact with the cortical bone surface and provides increased fixation strength. Even though the superior stability of axial screw fixation has been demonstrated, little is known about the biomechanical stiffness against multidirectional loading or its characteristics within a unit construct. The purpose of the present study was to quantitatively evaluate the anchorage performance of CBT by the finite element (FE) method.

METHODS

Thirty FE models of L-4 vertebrae from human spines (mean age [± SD] 60.9 ± 18.7 years, 14 men and 16 women) were computationally created and pedicle screws were placed using the traditional trajectory (TT) and CBT. The TT screw was 6.5 mm in diameter and 40 mm in length, and the CBT screw was 5.5 mm in diameter and 35 mm in length. To make a valid comparison, the same shape of screw was inserted into the same pedicle in each subject. First, the fixation strength of a single pedicle screw was compared by axial pullout and multidirectional loading tests. Next, vertebral fixation strength within a construct was examined by simulating the motions of flexion, extension, lateral bending, and axial rotation.

RESULTS

CBT demonstrated a 26.4% greater mean pullout strength (POS; p = 0.003) than TT, and also showed a mean 27.8% stronger stiffness (p < 0.05) during cephalocaudal loading and 140.2% stronger stiffness (p < 0.001) during mediolateral loading. The CBT construct had superior resistance to flexion and extension loading and inferior resistance to lateral bending and axial rotation. The vertebral fixation strength of the construct was significantly correlated with bone mineral density of the femoral neck and the POS of a single screw.

CONCLUSIONS

CBT demonstrated superior fixation strength for each individual screw and sufficient stiffness in flexion and extension within a construct. The TT construct was superior to the CBT construct during lateral bending and axial rotation.

Restricted access

Tateru Shiraishi, Takeshi Ikegami, Yasuhiro Okubo, Yoshiyuki Yato and Masanori Honda

✓ The authors report on two patients undergoing long-term hemodialysis in whom cervical myelopathy was caused by calcification related to the cervical dural sac. The lesions were demonstrated on plain computerized tomography (CT) scans as dotted curvilinear bands outlining the dural sacs in almost the whole of their cervical spines. During posterior decompressive surgery in both cases, the CT scanning—documented curvilinear bands were identified as calcified plaques infiltrating the fibrous membranes beneath the ligamenta flava, constricting the cervical dural tube. In each case, the spinal cord could not be decompressed by merely enlarging the osseous spinal canal; rather, it required removal of the calcified membrane from the posterior surface of the dura. Based on the operative findings, the lesion should be described as cervical peridural calcification.

Restricted access

Keitaro Matsukawa, Yoshiyuki Yato, Takashi Kato, Hideaki Imabayashi, Takashi Asazuma and Koichi Nemoto

Object

A cortical bone trajectory (CBT) is a new pedicle screw trajectory that maximizes the thread contact with cortical bone surface, providing enhanced screw purchase. Despite the increased use of the CBT in the lumbar spine, little is known about the insertion technique for the sacral CBT. The aim of this study was to introduce a novel sacral pedicle screw trajectory. This trajectory engages with denser bone maximally by the screw penetrating the S-1 superior endplate through a more medial entry point than the traditional technique, and also has safety advantages, with the protrusion of the screw tip into the intervertebral disc space carrying no risk of neurovascular injury.

Methods

In this study, the CT scans of 50 adults were studied for morphometric measurement of the new trajectory. The entry point was supposed to be the junction of the center of the superior articular process of S-1 and approximately 3 mm inferior to the most inferior border of the inferior articular process of L-5. The direction was straight forward in the axial plane without convergence, angulated cranially in the sagittal plane penetrating the middle of the sacral endplate. The cephalad angle to the sacral endplate, length of trajectory, and safety of the trajectory were investigated. Next, the insertional torque of pedicle screws using this technique was measured intraoperatively in 19 patients and compared with the traditional technique.

Results

The mean cephalad angle in these 50 patients was 30.7° ± 5.1°, and the mean length of trajectory was 31.5 ± 3.5 mm. The CT analysis revealed that the penetrating S-1 endplate technique did not cause any neurovascular injury anteriorly in any case. The new technique demonstrated an average of 141% higher insertional torque than the traditional monocortical technique.

Conclusions

The penetrating S-1 endplate technique through the medial entry point is suitable for the connection of lumbar CBT, has revealed favorable stability for lumbosacral fixation, and has reduced the potential risk of neurovascular injuries.

Restricted access

Tsubasa Sakai, Takashi Tsuji, Takashi Asazuma, Yoshiyuki Yato, Osamu Matsubara and Koichi Nemoto

✓The authors report a case of spontaneous resorption of intradural disc material in a patient with recurrent intradural lumbar disc herniation and review magnetic resonance (MR) imaging and histopathological findings. Intradural lumbar disc herniation is rare, and most patients with this condition require surgical intervention due to severe leg pain and vesicorectal disturbance. In the present case, however, the recurrent intradural herniated mass had completely disappeared by 9 months after onset. Histological examination of intradural herniated disc tissue demonstrated infiltrated macrophages and angiogenesis within the herniated tissue, and Gd-enhanced MR images showed rim enhancement not only at the initial presentation, but also at recurrence.

The authors conclude that when rim enhancement is present on Gd-enhanced MR images, there is a possibility of spontaneous resorption even though the herniated mass may be located within the intradural space. Moreover, when radiculopathy is controllable and cauda equina syndrome is absent, conservative therapy can be selected.

Full access

Keitaro Matsukawa, Yoshiyuki Yato, Hideaki Imabayashi, Naobumi Hosogane, Takashi Asazuma and Kazuhiro Chiba

OBJECTIVE

In the management of isthmic spondylolisthesis, the pedicle screw system is widely accepted surgical strategy; however, there are few reports on the biomechanical behavior of pedicle screws in spondylolytic vertebrae. The purpose of the present study was to compare fixation strength between pedicle screws inserted through the traditional trajectory (TT) and those inserted through a cortical bone trajectory (CBT) in spondylolytic vertebrae by computational simulation.

METHODS

Finite element models of spondylolytic and normal vertebrae were created from CT scans of 17 patients with adult isthmic spondylolisthesis (mean age 54.6 years, 10 men and 7 women). Each vertebral model was implanted with pedicle screws using TT and CBT techniques and compared between two groups. First, fixation strength of a single screw was evaluated by measuring axial pullout strength. Next, vertebral fixation strength of a paired-screw construct was examined by applying forces simulating flexion, extension, lateral bending, and axial rotation to vertebrae.

RESULTS

Fixation strengths of TT screws showed a nonsignificant difference between the spondylolytic and the normal vertebrae (p = 0.31–0.81). Fixation strength of CBT screws in the spondylolytic vertebrae demonstrated a statistically significant decrease in pullout strength (21.4%, p < 0.01), flexion (44.1%, p < 0.01), extension (40.9%, p < 0.01), lateral bending (38.3%, p < 0.01), and axial rotation (28.1%, p < 0.05) compared with those in the normal vertebrae. In the spondylolytic vertebrae, no statistically significant difference was observed for pullout strength between TT and CBT (p = 0.90); however, the CBT construct showed lower vertebral fixation strength in flexion (39.0%, p < 0.01), extension (35.6%, p < 0.01), lateral bending (50.7%, p < 0.01), and axial rotation (59.3%, p < 0.01) compared with the TT construct.

CONCLUSIONS

CBT screws are less optimal for stabilizing the spondylolytic vertebra due to their lower fixation strength compared with TT screws.