Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yonehiro Kanemura x
Clear All Modify Search
Restricted access

Yonehiro Kanemura, Nobuhiko Okamoto, Hiroaki Sakamoto, Tomoko Shofuda, Hiroyuki Kamiguchi and Mami Yamasaki

Object

Mutations in the gene that codes for the human neural cell adhesion molecule L1 (L1CAM), are known to cause a wide variety of anomalies, now understood as phenotypic expressions of L1 syndrome. The correlations between genotype and phenotype, however, are not fully established. The authors report the results of a nationwide investigation of L1CAM gene mutations that was performed to improve the understanding of L1-mediated molecular mechanisms of X-linked hydrocephalus and to establish neurorimaging criteria for this severe form of L1 syndrome.

Methods

Ninety-six genomic DNA samples from members of 57 families were obtained from the Congenital Hydrocephalus Research Committee. By using polymerase chain reaction and direct DNA sequencing, the authors identified 25 different L1CAM gene mutations, 20 of them novel, in 26 families with X-linked hydrocephalus. All the mutations were L1CAM loss-of-function mutations, and all the patients had severe hydrocephalus and severe mental retardation. In all cases, specific abnormalities were visible on neuroimaging: a rippled ventricular wall after shunt placement, an enlarged quadrigeminal plate, a large massa intermedia, and hypoplasia of the cerebellar vermis (anterior or total). The patients also had adducted thumbs, spastic paraplegia, and hypoplasia of the corpus callosum, which are characteristic of L1 syndrome.

Conclusions

The L1CAM loss-of-function mutations cause a severe form of L1 syndrome, unlike the milder form produced by mutations in the L1CAM cytoplasmic domain. We also identified neurorimaging criteria for this severe form of L1 syndrome. These criteria can be used to predict loss-of-function mutations in patients with X-linked hydrocephalus and to help in diagnosing this syndrome.

Restricted access

Mami Yamasaki, Masahiro Nonaka, Nobuhiro Suzumori, Hiroaki Nakamura, Hiroshi Fujita, Akira Namba, Yoshimasa Kamei, Takahiro Yamada, Ritsuko K. Pooh, Mitsuyo Tanemura, Norihito Sudo, Masato Nagasaka, Ema Yoshioka, Tomoko Shofuda and Yonehiro Kanemura

Object

The aim of this study was to evaluate the feasibility of prenatal L1CAM gene testing for X-linked hydrocephalus (XLH).

Methods

In a nationwide study conducted in Japan between 1999 and 2009, the authors identified 51 different L1CAM gene mutations in 56 families with XLH. Of these 56 families, 9 obligate carriers requested prenatal gene mutation analysis for the fetal L1CAM gene in 14 pregnancies.

Results

In 2004, new clinical guidelines for genetic testing were established by 10 Japanese genetic medicine–related societies. These guidelines stated that the genetic testing of carriers should be done only with their consent and with genetic counseling. Therefore, because females are carriers, since 2004, L1CAM gene analysis has not been performed for female fetuses. The authors report on 7 fetal genetic analyses that were performed at the request of families carrying L1CAM mutations, involving 3 female (prior to 2004) and 4 male fetuses. Of the 7 fetuses, 3 (1 male and 2 female) carried L1CAM mutations. Of these 3, 1 pregnancy (the male fetus) was terminated; in the other cases, the pregnancies continued, and 3 female and 3 male babies without the XLH phenotype were born.

Conclusions

Prenatal L1CAM gene testing combined with genetic counseling was beneficial for families carrying L1CAM mutations.

Restricted access

Takero Hirata, Manabu Kinoshita, Keisuke Tamari, Yuji Seo, Osamu Suzuki, Nobuhide Wakai, Takamune Achiha, Toru Umehara, Hideyuki Arita, Naoki Kagawa, Yonehiro Kanemura, Eku Shimosegawa, Naoya Hashimoto, Jun Hatazawa, Haruhiko Kishima, Teruki Teshima and Kazuhiko Ogawa

OBJECTIVE

It is important to correctly and precisely define the target volume for radiotherapy (RT) of malignant glioma. 11C-methionine (MET) positron emission tomography (PET) holds promise for detecting areas of glioma cell infiltration: the authors’ previous research showed that the magnitude of disruption of MET and 18F-fluorodeoxyglucose (FDG) uptake correlation (decoupling score [DS]) precisely reflects glioma cell invasion. The purpose of the present study was to analyze volumetric and geometrical properties of RT target delineation based on DS and compare them with those based on MRI.

METHODS

Twenty-five patients with a diagnosis of malignant glioma were included in this study. Three target volumes were compared: 1) contrast-enhancing core lesions identified by contrast-enhanced T1-weighted images (T1Gd), 2) high-intensity lesions on T2-weighted images, and 3) lesions showing high DS (DS ≥ 3; hDS). The geometrical differences of these target volumes were assessed by calculating the probabilities of overlap and one encompassing the other. The correlation of geometrical features of RT planning and recurrence patterns was further analyzed.

RESULTS

The analysis revealed that T1Gd with a 2.0-cm margin was able to cover the entire high DS area only in 6 (24%) patients, which indicates that microscopic invasion of glioma cells often extended more than 2.0 cm beyond a Gd-enhanced core lesion. Insufficient coverage of high DS regions with RT target volumes was suggested to be a risk for out-of-field recurrence. Higher coverage of hDS by T1Gd with a 2-cm margin (i.e., higher values of “[T1Gd + 2 cm]/hDS”) had a trend to positively impact overall and progression-free survival. Cox regression analysis demonstrated that low coverage of hDS by T1Gd with a 2-cm margin was predictive of disease recurrence outside the Gd-enhanced core lesion, indicative of out-of-field reoccurrence.

CONCLUSIONS

The findings of this study indicate that MRI is inadequate for target delineation for RT in malignant glioma treatment. Expanding the treated margins substantially beyond the MRI-based target volume may reduce the risk of undertreatment, but it may also result in unnecessary irradiation of uninvolved regions. As MET/FDG PET-DS seems to provide more accurate information for target delineation than MRI in malignant glioma treatment, this method should be further evaluated on a larger scale.