Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Ying Li x
Clear All Modify Search
Full access

Ying-li Gu and Zhong-xin Zhao

Restricted access

Xu Bang-Zong, Pan Hong-Xue, Li Ke-Ming, Chen Xi-Jin, Tian Ying-Dei, Li Yong-Lin and Liu Jian

✓ A biomembrane was developed from pig peritoneum treated with 0.65% glutaraldehyde. This was evaluated for use as a dural substitute in an animal model and in a patient population. After being treated with the glutaraldehyde solution, the biomembrane lost its antigenicity while its collagen underwent an irreversible cross-linking reaction, causing it to become a stable nonviable polymer resistant to absorption by the host. The biomembrane was used experimentally in 43 procedures on 20 dogs and was applied clinically in 614 patients. The results demonstrated that it is an acceptable material for the repair of dural defects, with the following advantages: 1) it is nontoxic to the body and brain tissues, with minimal tissue reaction; 2) its biophysical properties facilitate watertight closure with sutures; 3) its distensibility makes it suitable for decompressive surgical dural repair; and 4) its visceral surface is extremely smooth, causing virtually no adhesions with the brain tissue while the outer surface readily heals with the subcutaneous tissue.

Free access

Ying Chen, Linyan Zhang, Tingting Qin, Zhenzhen Wang, Ying Li and Bing Gu

OBJECTIVE

Various implanted materials are used in neurosurgery; however, there remains a lack of pooled data on infection rates (IRs) and infective bacteria over past decades. The goal of this study was to investigate implant infections in neurosurgical procedures in a longitudinal retrospective study and to evaluate the IRs of neurosurgically implanted materials and the distribution of pathogenic microorganisms.

METHODS

A systematic literature search was conducted using PubMed and Web of Science databases for the time period between 1968 and 2018. Neurosurgical implant infections were studied in 5 subgroups, including operations or diseases, implanted materials, bacteria, distribution by country, and time periods, which were obtained from the literature and statistically analyzed. In this meta-analysis, statistical heterogeneity across studies was tested by using p values and I2 values between studies of associated pathogens. Egger’s test was used for assessing symmetries of funnel plots with Stata 11.0 software. Methodological quality was assessed to judge the risk of bias according to the Cochrane Handbook.

RESULTS

A total of 22,971 patients from 227 articles satisfied the study’s eligibility criteria. Of these, 1118 cases of infection were reported, and the overall IR was 4.87%. In this study, the neurosurgical procedures or disorders with the top 3 IRs included craniotomy (IR 6.58%), cranioplasty (IR 5.89%), and motor movement disorders (IR 5.43%). Among 13 implanted materials, the implants with the top 3 IRs included polypropylene-polyester, titanium, and polyetheretherketone (PEEK), which were 8.11%, 8.15%, and 7.31%, respectively. Furthermore, the main causative pathogen was Staphylococcus aureus and the countries with the top 3 IRs were Denmark (IR 11.90%), Korea (IR 10.98%), and Mexico (IR 9.26%). Except for the low IR from 1998 to 2007, the overall implant IR after neurosurgical procedures was on the rise.

CONCLUSIONS

In this study, the main pathogen in neurosurgery was S. aureus, which can provide a certain reference for the clinic. In addition, the IRs of polypropylene-polyester, titanium, and PEEK were higher than other materials, which means that more attention should be paid to them. In short, the total IR was high in neurosurgical implants and should be taken seriously.

Restricted access

Yingsong Wang, Jingming Xie, Zhi Zhao, Ying Zhang, Tao Li and Yongyu Si

Object

Phase contrast–cine MRI (PC-cine MRI) studies in patients with syringomyelia and Chiari malformation Type I (CM-I) have demonstrated abnormal CSF flow across the foramen magnum, which can revert to normal after craniocervical decompression with syrinx shrinkage. In order to investigate the mechanisms leading to postoperative syringomyelia shrinkage, the authors studied the hydrodynamic changes of CSF flow in the craniocervical junction and spinal canal in patients with scoliosis associated with syringomyelia after one-stage deformity correction by posterior vertebral column resection.

Methods

Preoperative and postoperative CSF flow dynamics at the levels of the foramen magnum, C-7, T-7 (or apex), and L-1 were assessed by electrocardiogram-synchronized cardiac-gated PC-cine MRI in 8 adolescent patients suffering from severe scoliosis with syringomyelia and CM-I (scoliosis group) and undergoing posterior vertebral column resection. An additional 8 patients with syringomyelia and CM-I without spinal deformity (syrinx group) and 8 healthy volunteers (control group) were also enrolled. Mean values were obtained for the following parameters: the duration of a CSF cycle, the duration of caudad CSF flow (CSF downflow [DF]) and cephalad CSF flow (CSF upflow [UF]), the ratio of DF duration to CSF cycle duration (DF%), and the ratio of UF duration to CSF cycle duration (UF%). The ratio of the stationary phase (SP) duration to CSF cycle duration was calculated (SP%). The maximum downflow velocities (VDmax) and maximum upflow velocities (VUmax) were measured. SPSS (version 14.0) was used for all statistical analysis.

Results

Patients in the scoliosis group underwent one-stage posterior vertebral column resection for deformity correction without suboccipital decompression. The mean preoperative coronal Cobb angle was 102.4° (range 76°–138°). The mean postoperative Cobb angle was 41.7° (range 12°–75°), with an average correction rate of 59.3%. During the follow-up, 1 patient with hypermyotonia experienced a significant decrease of muscle tension and 1 patient with reduced anal sphincter tone manifested recovery. A total of 5 patients demonstrated a significant decrease (> 30%) in syrinx size. With respect to changes in CSF flow dynamics, the syrinx group was characterized by slower and shorter downflow than the control group, and the difference was more significant at the foramen magnum and C-7 levels. In patients with scoliosis, CSF downflow at the foramen magnum level was significantly restricted, and a prolonged stationary phase indicated increased obstruction of CSF flow. After posterior vertebral column resection, the peak velocity of CSF flow at the foramen magnum increased, and the downflow phase duration was markedly prolonged. The parameters showed a return to almost normal CSF dynamics at the craniocervical region, and this improvement was maintained for 6–12 months of follow-up.

Conclusions

There were distinct abnormalities of CSF flow at the craniocervical junction in patients with syringomyelia. Abnormal dynamics of downflow could be aggravated by associated severe spinal deformity and improved by correction via posterior vertebral column resection.

Full access

Jiang Liu, Yue Yuan, Ying Fang, Li Zhang, Xiao-Li Xu, Hong-Ju Liu, Zhe Zhang and Yan-Bing Yu

OBJECT

Typical hemifacial spasm (HFS) commonly initiates from the orbicularis oculi muscle to the orbicularis oris muscle. Atypical HFS (AHFS) is different from typical HFS, in which the spasm of muscular orbicularis oris is the primary presenting symptom. The objective of this study was to analyze the sites of compression and the effectiveness of microvascular decompression (MVD) for AHFS.

METHODS

The authors retrospectively analyzed the clinical data for 12 consecutive patients who underwent MVD for AHFS between July 2008 and July 2013.

RESULTS

Postoperatively, complete remission of facial spasm was found in 10 of the 12 patients, which gradually disappeared after 2 months in 2 patients. No recurrence of spasm was observed during follow-up. Immediate postoperative facial paralysis accompanied by hearing loss occurred in 1 patient and temporary hearing loss with tinnitus in 2. All 3 patients with complications had gradual improvement during the follow-up period.

CONCLUSIONS

The authors conclude that most cases of AHFS were caused by neurovascular compression on the posterior/rostral side of the facial nerve distal to the root entry zones. MVD is a safe treatment for AHFS, but the incidence of postoperative complications, such as facial paralysis and decrease in hearing, remains high.

Restricted access

Chuanhui Li, Shengzhang Wang, Jialiang Chen, Hongyu Yu, Ying Zhang, Fan Jiang, Shiqing Mu, Haiyun Li and Xinjian Yang

Object

Some totally occluded intracranial aneurysms may recur. The role of hemodynamic mechanisms in this process remains to be elucidated. The authors used computational fluid dynamic analysis and investigated the local hemodynamic characteristics at the aneurysm neck before and after total embolization, attempting to identify hemodynamic risk factors leading to recurrence of totally embolized aneurysms.

Methods

Between May 2008 and June 2010, the authors recruited 17 consecutive patients with totally occluded intracranial aneurysms (7 recanalized and 10 stable lesions). Using patient-specific 3D digital subtraction angiography data, the hemodynamic features before and after embolization were retrospectively characterized.

Results

The overall preembolization blood flow patterns were nearly the same in the recanalized and stable groups, with no significant difference in either the maximum wall shear stress (WSS) (p = 0.914) or the spatially averaged WSS (p = 0.322) at peak systole at the aneurysm neck. After occlusion, the overall flow pattern changed, and the WSS distribution at the treated aneurysm neck differed in the 2 groups. In all of the 7 recanalized cases, both the maximum WSS and spatially averaged WSS at peak systole at the treated aneurysm neck were higher than those at the aneurysm neck before embolization. In contrast, both parameters were decreased in 70%–80% of the stable cases. After embolization, both the maximum WSS (p = 0.021) and spatially averaged WSS (p = 0.041) at peak systole at the treated aneurysm neck were higher in the recanalized group than in the stable group.

Conclusions

Higher WSS at the treated aneurysm neck after total embolization can be an important hemodynamic factor that contributes to aneurysm recurrence after endovascular treatment.

Restricted access

Qiang Yuan, Xing Wu, Yirui Sun, Jian Yu, Zhiqi Li, Zhuoying Du, Ying Mao, Liangfu Zhou and Jin Hu

OBJECT

Some studies have demonstrated that intracranial pressure (ICP) monitoring reduces the mortality of traumatic brain injury (TBI). But other studies have shown that ICP monitoring is associated with increased mortality. Thus, the authors performed a meta-analysis of studies comparing ICP monitoring with no ICP monitoring in patients who have suffered a TBI to determine if differences exist between these strategies with respect to mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS.

METHODS

The authors systematically searched MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials (Central) from their inception to October 2013 for relevant studies. Randomized clinical trials and prospective cohort, retrospective observational cohort, and case-control studies that compared ICP monitoring with no ICP monitoring for the treatment of TBI were included in the analysis. Studies included had to report at least one point of mortality in an ICP monitoring group and a no–ICP monitoring group. Data were extracted for study characteristics, patient demographics, baseline characteristics, treatment details, and study outcomes.

RESULTS

A total of 14 studies including 24,792 patients were analyzed. The meta-analysis provides no evidence that ICP monitoring decreased the risk of death (pooled OR 0.93 [95% CI 0.77–1.11], p = 0.40). However, 7 of the studies including 12,944 patients were published after 2012 (January 2012 to October 2013), and they revealed that ICP monitoring was significantly associated with a greater decrease in mortality than no ICP monitoring (pooled OR 0.56 [95% CI 0.41–0.78], p = 0.0006). In addition, 7 of the studies conducted in North America showed no evidence that ICP monitoring decreased the risk of death, similar to the studies conducted in other regions. ICU LOSs were significantly longer for the group subjected to ICP monitoring (mean difference [MD] 0.29 [95% CI 0.21–0.37]; p < 0.00001). In the pooled data, the hospital LOS with ICP monitoring was also significantly longer than with no ICP monitoring (MD 0.21 [95% CI 0.04–0.37]; p = 0.01).

CONCLUSIONS

In this systematic review and meta-analysis of ICP monitoring studies, the authors found that the current clinical evidence does not indicate that ICP monitoring overall is significantly superior to no ICP monitoring in terms of the mortality of TBI patients. However, studies published after 2012 indicated a lower mortality in patients who underwent ICP monitoring.

Restricted access

Jingming Xie, Yingsong Wang, Zhi Zhao, Ying Zhang, Yongyu Si, Tao Li, Zhendong Yang and Luping Liu

Object

The surgical treatment of severe and rigid spinal deformities poses difficulties and dangers. In this article, the authors summarize their surgical techniques and evaluate patient outcomes after performing posterior vertebral column resection (PVCR) for the correction of spinal deformities with curves greater than 100°, and investigate the crucial points to ensure neurological safety during this challenging procedure.

Methods

The authors retrospectively reviewed their experience with 28 patients with extremely severe (Cobb angles in the coronal or sagittal plane > 100°) and rigid thoracic or thoracolumbar spine deformities who underwent PVCR. The average patient age was 20.2 years and all patients underwent a minimum follow-up of 24 months (range 24–60 months). Patients were divided into groups according to their morphological classification as follows: kyphosis alone (Group A, 6 patients with a mean Cobb angle of 109.0° [range 105°–120°]); kyphoscoliosis with coronal plane curves notably greater than sagittal plane curves (Group B, 14 patients with mean scoliotic curves of 116.6° [range 102°–170°] and kyphotic curves of 77.7° [range 42°–160°]); and kyphoscoliosis with sagittal curves notably greater than coronal plane curves (Group C, 8 patients with a mean coronal curve of 85.4° [range 65°–110°] and a mean sagittal curve of 117.6° [range 102°–155°]).

Results

A total of 36 vertebrae were removed in 28 patients who had a severe rigid spinal deformity, and the mean fusion extent was 13.3 vertebrae (range 7–17 vertebrae). The mean operating time was 620 minutes (range 320–920 minutes) with an average operative blood loss of 6,680 ml (range 3,000–24,000 ml). The overall final correction rate of scoliosis was 59.0%, and average postoperative kyphotic Cobb angles ranged from 30.4° to 95.9°. In Group A the mean preoperative sagittal angle of 109.0° was corrected to a mean postoperative angle of 32.0°. In the Group B kyphoscoliotic patients, the correction rate in the coronal plane was 58.6%; the Cobb angle in the sagittal plane was corrected from a mean of 77.7° preoperatively to 25.1° postoperatively; in Group C, the correction rate in the coronal plane was 58.5%, and the mean sagittal angle was reduced from a mean of 117.6° preoperatively to 39.0°. Of the 28 patients who underwent PVCR, 46 complications were observed in 18 patients intra- and postoperatively. There were 5 neurological complications including 1 case of late-onset paralysis and 4 cases of thoracic nerve root pain, all of which resolved during the early follow-up period. Nonneurological complications occurred more often in kyphoscoliotic patients (41 complications). The mean follow-up of all patients was 33.7 months (range 24–60 months).

Conclusions

Posterior vertebral column resection was effective in correcting severe rigid spinal deformity, although the procedure was technically demanding, exhaustingly lengthy, and was associated with a variety of complications. The PVCR technique created a space for spinal correction and spinal cord tension adjustment and the correction could be performed under direct inspection and by palpation of the tension in the spinal cord through the space. Therefore, in terms of the spinal cord, the deformity correction process involved in the PVCR procedure is relatively safe.

Restricted access

E-Jian Lee, Ming-Yang Lee, Guan-Liang Chang, Li-Hsuan Chen, Yu-Ling Hu, Tsung-Ying Chen and Tian-Shung Wu

Object. The authors examined whether delayed treatment with Mg++ would reduce brain infarction and improve electrophysiological and neurobehavioral recovery following cerebral ischemia—reperfusion.

Methods. Male Sprague—Dawley rats were subjected to right middle cerebral artery occlusion for 90 minutes followed by 72 hours of reperfusion. Magnesium sulfate (750 µmol/kg) or vehicle was given via intracarotid infusion at the beginning of reperfusion. Neurobehavioral outcome and somatosensory evoked potentials (SSEPs) were examined before and 72 hours after ischemia—reperfusion. Brain infarction was assessed after the rats had died.

Before ischemia—reperfusion, stable SSEP waveforms were recorded after individual fore- and hindpaw stimulations. At 72 hours of perfusion the SSEPs recorded from ischemic fore- and hindpaw cortical fields were depressed in vehicle-injected animals and the amplitudes decreased to 19 and 27% of baseline, respectively (p < 0.001). Relative to controls, the amplitudes of SSEPs recorded from both ischemic fore- and hindpaw cortical field in the Mg++-treated animals were significantly improved by 23% (p < 0.005) and 39% (p < 0.001) of baselines, respectively. In addition, Mg++ improved sensory and motor neurobehavioral outcomes by 34% (p < 0.01) and 24% (p < 0.05), respectively, and reduced cortical (p < 0.05) and striatal (p < 0.05) infarct sizes by 42 and 36%, respectively.

Conclusions. Administration of Mg++ at the commencement of reperfusion enhances electrophysiological and neurobehavioral recovery and reduces brain infarction after cerebral ischemia—reperfusion. Because Mg++ has already been used clinically, it may be worthwhile to investigate it further to see if it holds potential benefits for patients with ischemic stroke and for those who will undergo carotid endarterectomy.

Restricted access

Yisen Zhang, Zhongbin Tian, Chuzhong Li, Jian Liu, Ying Zhang, Xinjian Yang and Yazhuo Zhang

OBJECTIVE

Internal carotid artery (ICA) injuries during endoscopic endonasal surgery (EES) are catastrophic complications. Alongside the advancements in medical instrumentation and material, there is a need to modify previous treatment modalities and principles.

METHODS

A retrospective review of 3658 patients who underwent EES performed at the authors’ institution between January 2012 and December 2017 was conducted. Ultimately, 20 patients (0.55%) with ICA injury following EES were enrolled for analysis. Data collection included demographic data, preoperative diagnosis, injury setting, repair method, and immediate and follow-up angiographic and clinical outcomes.

RESULTS

Among the 20 patients, 11 received immediate endovascular therapy and 9 were treated only with packing. Of the 11 patients who received endovascular treatment, 6 were treated by covered stent and 5 by parent artery occlusion (PAO). The preservation rate of injured ICA increased from 20.0% (1 of 5) to 83.3% (5 of 6) after the Willis covered stent graft became available in January 2016. Of the 20 patients in the study, 19 recovered well and 1 patient—who had a pseudoaneurysm and was treated by PAO with a detachable balloon—suffered epistaxis after the hemostat in her nasal cavity was removed in ward, and she died later that day. The authors speculated that the detachable balloon had shifted to the distal part of ICA, although the patient could not undergo a repeat angiogram because she quickly suffered shock and could not be transferred to the catheter room. After the introduction of a hybrid operating room (OR), one patient whose first angiogram showed no ICA injury was found to have a pseudoaneurysm. He received endovascular treatment when he was brought for a repeat angiogram 5 days later in the hybrid OR after removing the hemostat in his nasal cavity. Of the 4 surviving patients treated with PAO, no external carotid artery–ICA bypass was required. The authors propose a modified endovascular treatment protocol for ICA injuries suffered during EES that exploits the advantage of the covered stent graft and the hybrid OR.

CONCLUSIONS

The endovascular treatment protocol used in this study for ICA injuries during EES was helpful in the management of this rare complication. Willis stent placement improved the preservation rate of injured ICA during EES. It would be highly advantageous to manage this complication in a hybrid OR or by a mobile C-arm to get a clear intraoperative angiogram.