Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yiemeng Hoi x
Clear All Modify Search
Restricted access

Yiemeng Hoi, Ling Gao, Markus Tremmel, Rocco A. Paluch, Adnan H. Siddiqui, Hui Meng and J Mocco


Pathological extremes in cerebrovascular remodeling may contribute to basilar artery (BA) dolichoectasia and fusiform aneurysm development. Factors regulating cerebrovascular remodeling are poorly understood. To better understand hemodynamic influences on cerebrovascular remodeling, we examined BA remodeling following common carotid artery (CCA) ligation in an animal model.


Rabbits were subjected to sham surgery (3 animals), unilateral CCA ligation (3 animals), or bilateral CCA ligation (5 animals). Transcranial Doppler ultrasonography and rotational angiography were used to compute BA flow, diameter, wall shear stress (WSS), and a tortuosity index on Days 0, 1, 4, 7, 14, 28, 56, and 84. Basilar artery tissues were stained and analyzed at Day 84. Statistical analysis was performed using orthogonal contrast analysis, repeated measures analysis of variance, or mixed regression analysis of repeated measures. Statistical significance was defined as a probability value < 0.05.


Basilar artery flow and diameter increased significantly after the procedure in both ligation groups, but only the bilateral CCA ligation group demonstrated significant differences between groups. Wall shear stress significantly increased only in animals in the bilateral CCA ligation group and returned to baseline by Day 28, with 52% of WSS correction occurring by Day 7. Only the bilateral CCA ligation group developed significant BA tortuosity, occurring within 7 days postligation. Unlike the animals in the sham and unilateral CCA ligation groups, the animals in the bilateral CCA ligation group had histological staining results showing a substantial internal elastic lamina fragmentation.


Increased BA flow results in adaptive BA remodeling until WSS returns to physiological baseline levels. Morphological changes occur rapidly following flow alteration and do not require chronic insult to affect substantial and significant structural transformation. Additionally, it appears that there exists a flow-increase threshold that, when surpassed, results in significant tortuosity.

Restricted access

Yiemeng Hoi, Hui Meng, Scott H. Woodward, Bernard R. Bendok, Ricardo A. Hanel, Lee R. Guterman and L. Nelson Hopkins

Object. Few researchers have quantified the role of arterial geometry in the pathogenesis of saccular cerebral aneurysms. The authors investigated the effects of parent artery geometry on aneurysm hemodynamics and assessed the implications relative to aneurysm growth and treatment effectiveness.

Methods. The hemodynamics of three-dimensional saccular aneurysms arising from the lateral wall of arteries with varying arterial curves (starting with a straight vessel model) and neck sizes were studied using a computational fluid dynamics analysis. The effects of these geometric parameters on hemodynamic parameters, including flow velocity, aneurysm wall shear stress (WSS), and area of elevated WSS during the cardiac cycle (time-dependent impact zone), were quantified. Unlike simulations involving aneurysms located on straight arteries, blood flow inertia (centrifugal effects) rather than viscous diffusion was the predominant force driving blood into aneurysm sacs on curved arteries. As the degree of arterial curvature increased, flow impingement on the distal side of the neck intensified, leading to elevations in the WSS and enlargement of the impact zone at the distal side of the aneurysm neck.

Conclusions. Based on these simulations the authors postulate that lateral saccular aneurysms located on more curved arteries are subjected to higher hemodynamic stresses. Saccular aneurysms with wider necks have larger impact zones. The large impact zone at the distal side of the aneurysm neck correlates well with other findings, implicating this zone as the most likely site of aneurysm growth or regrowth of treated lesions. To protect against high hemodynamic stresses, protection of the distal side of the aneurysm neck from flow impingement is critical.