Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Xinguang Yu x
Clear All Modify Search
Full access

Huai-Yu Tong, Yuan-Zheng Zhang, Sheng Li and Xin-Guang Yu

Full access

Zhiqiang Cui, Longsheng Pan, Huifang Song, Xin Xu, Bainan Xu, Xinguang Yu and Zhipei Ling

OBJECT

The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. This study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes.

METHODS

Two hundred and six DBS electrodes were implanted in the subthalamic nucleus (STN) in 110 patients with Parkinson disease. All patients underwent iMRI after implantation to define the accuracy of lead placement. Fifty-six DBS electrode positions in 35 patients deviated from the center of the STN, according to the result of the initial postplacement iMRI scans. Thus, we adjusted the electrode positions for placement in the center of the STN and verified this by means of second or third iMRI scans. Recording was performed in adjusted parameters in the x-, y-, and z-axes.

RESULTS

Fifty-six (27%) of 206 DBS electrodes were adjusted as guided by iMRI. Electrode position was adjusted on the basis of iMRI 62 times. The sum of target coordinate adjustment was −0.5 mm in the x-axis, −4 mm in the y-axis, and 15.5 mm in the z-axis; the total of distance adjustment was 74.5 mm in the x-axis, 88 mm in the y-axis, and 42.5 mm in the z-axis. After adjustment with the help of iMRI, all electrodes were located in the center of the STN. Intraoperative MRI revealed 2 intraparenchymal hemorrhages in 2 patients, brain shift in all patients, and leads penetrating the lateral ventricle in 3 patients.

CONCLUSIONS

The iMRI technique can guide surgeons as they adjust deviated electrodes to improve the accuracy of implanting the electrodes into the correct anatomical position. The iMRI technique can also immediately demonstrate acute changes such as hemorrhage and brain shift during DBS surgery.

Restricted access

Xin Wang, Zhiqi Mao, Zhiqiang Cui, Xin Xu, Longsheng Pan, Shuli Liang, Zhipei Ling and Xinguang Yu

OBJECTIVE

Primary Meige syndrome is characterized by blepharospasm and orofacial–cervical dystonia. Deep brain stimulation (DBS) is recognized as an effective therapy for patients with this condition, but previous studies have focused on clinical effects. This study explored the predictors of clinical outcome in patients with Meige syndrome who underwent DBS.

METHODS

Twenty patients who underwent DBS targeting the bilateral subthalamic nucleus (STN) or globus pallidus internus (GPi) at the Chinese People’s Liberation Army General Hospital from August 2013 to February 2018 were enrolled in the study. Their clinical outcomes were evaluated using the Burke–Fahn–Marsden Dystonia Rating Scale at baseline and at the follow-up visits; patients were accordingly divided into a good-outcome group and a poor-outcome group. Putative influential factors, such as age and course of disease, were examined separately, and the factors that reached statistical significance were subjected to logistic regression analysis to identify predictors of clinical outcomes.

RESULTS

Four factors showed significant differences between the good- and poor-outcome groups: 1) the DBS target (STN vs GPi); 2) whether symptoms first appeared at multiple sites or at a single site; 3) the sub-item scores of the mouth at baseline; and 4) the follow-up period (p < 0.05). Binary logistic regression analysis revealed that initial involvement of multiple sites and the mouth score were the only significant predictors of clinical outcome.

CONCLUSIONS

The severity of the disease in the initial stage and presurgical period was the only independent predictive factor of the clinical outcomes of DBS for the treatment of patients with Meige syndrome.

Free access

Guo-chen Sun, Xiao-lei Chen, Yuan-zheng Hou, Xin-guang Yu, Xiao-dong Ma, Gang Liu, Lei Liu, Jia-shu Zhang, Hao Tang, Ru-Yuan Zhu, Ding-Biao Zhou and Bai-nan Xu

OBJECTIVE

Endoscopic removal of intracerebral hematomas is becoming increasingly common, but there is no standard technique. The authors explored the use of a simple image-guided endoscopic method for removal of spontaneous supratentorial hematomas.

METHODS

Virtual reality technology based on a hospital picture archiving and communications systems (PACS) was used in 3D hematoma visualization and surgical planning. Augmented reality based on an Android smartphone app, Sina neurosurgical assist, allowed a projection of the hematoma to be seen on the patient's scalp to facilitate selection of the best trajectory to the center of the hematoma. A obturator and transparent sheath were used to establish a working channel, and an endoscope and a metal suction apparatus were used to remove the hematoma.

RESULTS

A total of 25 patients were included in the study, including 18 with putamen hemorrhages and 7 with lobar cerebral hemorrhages. Virtual reality combined with augmented reality helped in achieving the desired position with the obturator and sheath. The median time from the initial surgical incision to completion of closure was 50 minutes (range 40–70 minutes). The actual endoscopic operating time was 30 (range 15–50) minutes. The median blood loss was 80 (range 40–150) ml. No patient experienced postoperative rebleeding. The average hematoma evacuation rate was 97%. The mean (± SD) preoperative Glasgow Coma Scale (GCS) score was 6.7 ± 3.2; 1 week after hematoma evacuation the mean GCS score had improved to 11.9 ± 3.1 (p < 0.01).

CONCLUSIONS

Virtual reality using hospital PACS and augmented reality with a smartphone app helped precisely localize hematomas and plan the appropriate endoscopic approach. A transparent sheath helped establish a surgical channel, and an endoscope enabled observation of the hematoma's location to achieve satisfactory hematoma removal.