Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: William Schairer x
Clear All Modify Search
Free access

Takahito Fujimori, Shinichi Inoue, Hai Le, William W. Schairer, Sigurd H. Berven, Bobby K. Tay, Vedat Deviren, Shane Burch, Motoki Iwasaki and Serena S. Hu

Object

Despite increasing numbers of patients with adult spinal deformity, it is unclear how to select the optimal upper instrumented vertebra (UIV) in long fusion surgery for these patients. The purpose of this study was to compare the use of vertebrae in the upper thoracic (UT) versus lower thoracic (LT) spine as the upper instrumented vertebra in long fusion surgery for adult spinal deformity.

Methods

Patients who underwent fusion from the sacrum to the thoracic spine for adult spinal deformity with sagittal imbalance at a single medical center were studied. The patients with a sagittal vertical axis (SVA) ≥ 40 mm who had radiographs and completed the 12-item Short-Form Health Survey (SF-12) preoperatively and at final follow-up (≥ 2 years postoperatively) were included.

Results

Eighty patients (mean age of 61.1 ± 10.9 years; 69 women and 11 men) met the inclusion criteria. There were 31 patients in the UT group and 49 patients in the LT group. The mean follow-up period was 3.6 ± 1.6 years. The physical component summary (PCS) score of the SF-12 significantly improved from the preoperative assessment to final follow-up in each group (UT, 34 to 41; LT, 29 to 37; p = 0.001). This improvement reached the minimum clinically important difference in both groups. There was no significant difference in PCS score improvement between the 2 groups (p = 0.8). The UT group had significantly greater preoperative lumbar lordosis (28° vs 18°, p = 0.03) and greater thoracic kyphosis (36° vs 18°, p = 0.001). After surgery, there was no significant difference in lumbar lordosis or thoracic kyphosis. The UT group had significantly greater postoperative cervicothoracic kyphosis (20° vs 11°, p = 0.009). The UT group tended to maintain a smaller positive SVA (51 vs 73 mm, p = 0.08) and smaller T-1 spinopelvic inclination (−2.6° vs 0.6°, p = 0.06). The LT group tended to have more proximal junctional kyphosis (PJK), although the difference did not reach statistical significance. Radiographic PJK was 32% in the UT group and 41% in the LT group (p = 0.4). Surgical PJK was 6.4% in the UT group and 10% in the LT group (p = 0.6).

Conclusions

Both the UT and LT groups demonstrated significant improvement in clinical and radiographic outcomes. A significant difference was not observed in improvement of clinical outcomes between the 2 groups.

Restricted access

Yoon Ha, Keishi Maruo, Linda Racine, William W. Schairer, Serena S. Hu, Vedat Deviren, Shane Burch, Bobby Tay, Dean Chou, Praveen V. Mummaneni, Christopher P. Ames and Sigurd H. Berven

Object

Proximal junctional kyphosis (PJK) is a common and significant complication after corrective spinal deformity surgery. The object of this study was to compare—based on clinical outcomes, postoperative proximal junctional kyphosis rates, and prevalence of revision surgery—proximal thoracic (PT) and distal thoracic (DT) upper instrumented vertebra (UIV) in adults who underwent spine fusion to the sacrum for the treatment of spinal deformity.

Methods

In this retrospective study the authors evaluated clinical and radiographic data from consecutive adults (age > 21 years) with a deformity treated using long instrumented posterior spinal fusion to the sacrum in the period from 2007 to 2009. The PT group included patients in whom the UIV was between T-2 and T-5, whereas the DT group included patients in whom the UIV level was between T-9 and L-1. Perioperative surgical data were compared between the PT and DT groups. Additionally, segmental, regional, and global spinal alignments, as well as the sagittal Cobb angle at the proximal junction, were analyzed on preoperative, early postoperative, and final standing 36-in. radiographs. Patient-reported outcome measurements (visual analog scale, Scoliosis Research Society Patient Questionnaire-22, Oswestry Disability Index, and the 36-Item Short-Form Health Survey) were compared.

Results

Eighty-nine patients, 22 males and 67 females, had a minimum follow-up of 2 years, and thus were eligible for participation in this study. Sixty-seven patients were in the DT group and 22 were in the PT group. Operative time (p = 0.387) and estimated blood loss (p < 0.05) were slightly higher in the PT group. The overall rate of revision surgery was 48.0% and 54.5% in the DT and PT groups, respectively (p = 0.629). The prevalence of PJK according to radiological criteria was 34% in the DT group and 27% in the PT group (p = 0.609). The percent of patients with PJK that required surgical correction (surgical PJK) was 11.9% (8 of 67) in the DT group and 9.1% (2 of 22) in the PT group (p = 1.0). The onset of surgical PJK was significantly earlier than radiological PJK in the DT group (p < 0.01). The types of PJK were different in the PT and DT groups. Compression fracture at the UIV was more prevalent in the DT group, whereas subluxation was more prevalent in the PT group. Postoperatively, the PT group had less thoracic kyphosis (p = 0.02), less sagittal imbalance (p < 0.01), and less pelvic tilt (p = 0.04). In the DT group, early postoperative radiographs demonstrated that the proximal junctional angle of patients with surgical PJK was greater than in those without PJK and those with radiological PJK (p < 0.01). Clinical outcomes were significantly improved in both groups, and there was no significant difference between the groups.

Conclusions

Both PT and DT UIVs improve segmental and global sagittal plane alignment as well as patient-reported quality of life in those treated for adult spinal deformity. The prevalence of PJK was not different in the PT and DT groups. However, compression fracture was the mechanism more frequently observed with DT PJK, and subluxation was the mechanism more frequently observed in PT PJK. Strategies to avoid PJK may include vertebral augmentation to prevent fracture at the DT spine and mechanical means to prevent vertebral subluxation at the PT spine.

Free access

Beejal Y. Amin, Tsung-Hsi Tu, William W. Schairer, Lumine Na, Steven Takemoto, Sigurd Berven, Vedat Deviren, Christopher Ames, Dean Chou and Praveen V. Mummaneni

Object

Administrative databases are increasingly being used to establish benchmarks for quality of care and to compare performance across peer hospitals. As proposals for accountable care organizations are being developed, readmission rates will be increasingly scrutinized. The purpose of the present study was to assess whether the all-cause readmissions rate appropriately reflects the University of California, San Francisco (UCSF) Medical Center hospital's clinically relevant readmission rate for spine surgery patients and to identify predictors of readmission.

Methods

Data for 5780 consecutive patient encounters managed by 10 spine surgeons at UCSF Medical Center from October 2007 to June 2011 were abstracted from the University HealthSystem Consortium (UHC) using the Clinical Data Base/Resource Manager. Of these 5780 patient encounters, 281 patients (4.9%) were rehospitalized within 30 days of the previous discharge date. The authors performed an independent chart review to determine clinically relevant reasons for readmission and extracted hospital administrative data to calculate direct costs. Univariate logistic regression analysis was used to evaluate possible predictors of readmission. The two-sample t-test was used to examine the difference in direct cost between readmission and nonreadmission cases.

Results

The main reasons for readmission were infection (39.8%), nonoperative management (13.4%), and planned staged surgery (12.4%). The current all-cause readmission algorithm resulted in an artificially high readmission rate from the clinician's point of view. Based on the authors' manual chart review, 69 cases (25% of the 281 total readmissions) should be excluded because 39 cases (13.9%) were planned staged procedures; 16 cases (5.7%) were unrelated to spine surgery; and 14 surgical cases (5.0%) were cancelled or rescheduled at index admission due to unpredictable reasons. When these 69 cases are excluded, the direct cost of readmission is reduced by 29%. The cost variance is in excess of $3 million. Predictors of readmission were admission status (p < 0.0001), length of stay (p = 0.0001), risk of death (p < 0.0001), and age (p = 0.021).

Conclusions

The authors' findings identify the potential pitfalls in the calculation of readmission rates from administrative data sets. Benchmarking algorithms for defining hospitals' readmission rates must take into account planned staged surgery and eliminate unrelated reasons for readmission. When this is implemented in the calculation method, the readmission rate will be more accurate. Current tools overestimate the clinically relevant readmission rate and cost.