Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: William Logan x
Clear All Modify Search
Restricted access

Çagatay Önal, Hiroshi Otsubo, Takashi Araki, Shiro Chitoku, Ayako Ochi, Shelly Weiss, William Logan, Irene Elliott, O. Carter Snead III and James T. Rutka

Object. This study was performed to evaluate the complications of invasive subdural grid monitoring during epilepsy surgery in children.

Methods. The authors retrospectively reviewed the records of 35 consecutive children with intractable localization-related epilepsy who underwent invasive video electroencephalography (EEG) with subdural grid electrodes at The Hospital for Sick Children between 1996 and 2001. After subdural grid monitoring and identification of the epileptic regions, cortical excisions and/or multiple subpial transections (MSTs) were performed. Complications after these procedures were then categorized as either surgical or neurological.

There were 17 male and 18 female patients whose mean age was 11.7 years. The duration of epilepsy before surgery ranged from 2 to 17 years (mean 8.3 years). Fifteen children (43%) had previously undergone surgical procedures for epilepsy. The number of electrodes on the grids ranged from 40 to 117 (mean 95). During invasive video EEG, cerebrospinal fluid leaks occurred in seven patients. Also, cerebral edema (five patients), subdural hematoma (five patients), and intracerebral hematoma (three patients) were observed on postprocedural imaging studies but did not require surgical intervention. Hypertrophic scars on the scalp were observed in nine patients. There were three infections, including one case of osteomyelitis and two superficial wound infections. Blood loss and the amounts of subsequent transfusions correlated directly with the size and number of electrodes on the grids (p < 0.001). Twenty-eight children derived significant benefit from cortical resections and MSTs, with a more than 50% reduction of seizures and a mean follow-up period of 30 months.

Conclusions. The results of this study indicate that carefully selected pediatric patients with intractable epilepsy can benefit from subdural invasive monitoring procedures that entail definite but acceptable risks.

Restricted access

David J. Mikulis, Gregory Krolczyk, Hubert Desal, William Logan, Gabrielle deVeber, Peter Dirks, Michael Tymianski, Adrian Crawley, Alex Vesely, Andrea Kassner, David Preiss, Ron Somogyi and Joseph A. Fisher

Object. The ability to map cerebrovascular reactivity (CVR) at the tissue level in patients with moyamoya disease could have considerable impact on patient management, especially in guiding surgical intervention and assessing the effectiveness of surgical revascularization. This paper introduces a new noninvasive magnetic resonance (MR) imaging—based method to map CVR. Preoperative and postoperative results are reported in three cases to demonstrate the efficacy of this technique in assessing vascular reserve at the microvascular level.

Methods. Three patients with angiographically confirmed moyamoya disease were evaluated before and after surgical revascularization. Measurements of CVR were obtained by rapidly manipulating end-tidal PCO2 between hypercapnic and hypocapnic states during MR imaging. The CVR maps were then calculated by comparing the percentage of changes in MR signal with changes in end-tidal PCO2.

Presurgical CVR maps showed distinct regions of positive and negative reactivity that correlated precisely with the vascular territories supplied by severely narrowed vessels. Postsurgical reactivity maps demonstrated improvement in the two patients with positive clinical outcome and no change in the patient in whom a failed superficial temporal artery—middle cerebral artery bypass was performed.

Conclusions. Magnetic imaging—based CVR mapping during rapid manipulation of end-tidal PCO2 is an exciting new method for determining the location and extent of abnormal vascular reactivity secondary to proximal large-vessel stenoses in moyamoya disease. Although the study group is small, there seems to be considerable potential for guiding preoperative decisions and monitoring efficacy of surgical revascularization.