Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Wenhan Hu x
Clear All Modify Search
Full access

Wen-Han Hu, Chao Zhang, Kai Zhang, Xiao-Qiu Shao and Jian-Guo Zhang


Conflicting conclusions have been reported regarding several factors that may predict seizure outcomes after hemispheric surgery for refractory epilepsy. The goal of this study was to identify the possible predictors of seizure outcome by pooling the rates of postoperative seizure freedom found in the published literature.


A comprehensive literature search of PubMed, Embase, and the Cochrane Library identified English-language articles published since 1970 that describe seizure outcomes in patients who underwent hemispheric surgery for refractory epilepsy. Two reviewers independently assessed article eligibility and extracted the data. The authors pooled rates of seizure freedom from papers included in the study. Eight potential prognostic variables were identified and dichotomized for analyses. The authors also compared continuous variables within seizure-free and seizure-recurrent groups. Random- or fixed-effects models were used in the analyses depending on the presence or absence of heterogeneity.


The pooled seizure-free rate among the 1528 patients (from 56 studies) who underwent hemispheric surgery was 73%. Patients with an epilepsy etiology of developmental disorders, generalized seizures, nonlateralization on electroencephalography, and contralateral MRI abnormalities had reduced odds of being seizure-free after surgery.


Hemispheric surgery is an effective therapeutic modality for medically intractable epilepsy. This meta-analysis provides useful evidence-based information for the selection of candidates for hemispheric surgery, presurgical counseling, and explanation of seizure outcomes.

Restricted access

Wen-Han Hu, Chao Zhang, Kai Zhang, Fan-Gang Meng, Ning Chen and Jian-Guo Zhang


Whether selective amygdalohippocampectomy (SelAH) has similar seizure outcomes and better neuropsychological outcomes compared with anterior temporal lobectomy (ATL) is a matter of debate. The aim of this study was to compare the 2 types of surgery with respect to seizure outcomes and changes in IQ scores.


PubMed, Embase, and the Cochrane Library were searched for relevant studies published between January 1990 and September 2012. Studies comparing SelAH and ATL with respect to seizure and intelligence outcomes were included. Two reviewers assessed the quality of the included studies and independently extracted the data. Odds ratios and standardized mean deviations with 95% confidence intervals were used to compare pooled proportions of freedom from seizures and changes in IQ scores between the SelAH and ATL groups.


Three prospective and 10 retrospective studies were identified involving 745 and 766 patients who underwent SelAH and ATL, respectively. The meta-analysis demonstrated a statistically significant reduction in the odds of seizure freedom for patients who underwent SelAH compared with those who underwent ATL (OR 0.65 [95% CI 0.51–0.82], p = 0.0005). The differences between the changes in all IQ scores after the 2 types of surgery were not statistically significant, regardless of the side of resection.


Selective amygdalohippocampectomy statistically reduced the odds of being seizure free compared with ATL, but the clinical significance of this reduction needs to be further validated by well-designed randomized trials. Selective amygdalohippocampectomy did not have better outcomes than ATL with respect to intelligence.

Restricted access

Nicholas M. Barbaro

Restricted access

Baotian Zhao, Chao Zhang, Xiu Wang, Yao Wang, Chang Liu, Jiajie Mo, Zhong Zheng, Kai Zhang, Xiao-qiu Shao, Wenhan Hu and Jianguo Zhang

Focal cortical dysplasia type II (FCD II) is a common histopathological substrate of epilepsy surgery. Here, the authors propose a sulcus-centered resection strategy for this malformation, provide technical details, and assess the efficacy and safety of this technique. The main purpose of the sulcus-centered resection is to remove the folded gray matter surrounding a dysplastic sulcus, particularly that at the bottom of the sulcus. The authors also retrospectively reviewed the records of 88 consecutive patients with FCD II treated with resective surgery between January 2015 and December 2018. The demographics, clinical characteristics, electrophysiological recordings, neuroimaging studies, histopathological findings, surgical outcomes, and complications were collected. After the exclusion of diffusely distributed and gyrus-based lesions, 71 patients (30 females, 41 males) who had undergone sulcus-centered resection were included in this study. The mean (± standard deviation) age of the cohort was 17.78 ± 10.54 years (38 pediatric patients, 33 adults). Thirty-five lesions (49%) were demonstrated on MRI; 42 patients (59%) underwent stereo-EEG monitoring before resective surgery; and 37 (52%) and 34 (48%) lesions were histopathologically proven to be FCD IIa and IIb, respectively. At a mean follow-up of 3.34 ± 1.17 years, 64 patients (90%) remained seizure free, and 7 (10%) had permanent neurological deficits including motor weakness, sensory deficits, and visual field deficits. The study findings showed that in carefully selected FCD II cases, sulcus-centered resection is an effective and safe surgical strategy.

Restricted access

Baotian Zhao, Chao Zhang, Xiu Wang, Yao Wang, Jiajie Mo, Zhong Zheng, Lin Ai, Kai Zhang, Jianguo Zhang, Xiao-qiu Shao and Wenhan Hu


The aim of this study was to characterize the clinical and electrophysiological findings of epilepsy originating from the orbitofrontal cortex (OFC) as well as its surgical outcomes.


The authors retrospectively reviewed 27 consecutive cases of patients with drug-resistant orbitofrontal epilepsy (OFE) who underwent tailored resective surgery after a detailed presurgical workup. Demographic features, seizure semiology, imaging characteristics, resection site, pathological results, and surgical outcomes were analyzed. Patients were categorized according to semiology. The underlying neural network was further explored through quantitative FDG-PET and ictal stereo-electroencephalography (SEEG) analysis at the group level. FDG-PET studies between the semiology group and the control group were compared using a voxel-based independent t-test. Ictal SEEG was quantified by calculating the energy ratio (ER) of high- and low-frequency bands. An ER comparison between the anterior cingulate cortex (ACC) and the amygdala was performed to differentiate seizure spreading patterns in groups with different semiology.


Scalp electroencephalography (EEG) and MRI were inconclusive to a large extent. Patients were categorized into the following 3 semiology groups: the frontal group (n = 14), which included patients with hyperactive automatisms with agitated movements; the temporal group (n = 11), which included patients with oroalimentary or manual automatisms; and the other group (n = 2), which included patients with none of the abovementioned or indistinguishable manifestations. Patients in the frontal and temporal groups (n = 23) or in the frontal group only (n = 14) demonstrated significant hypometabolism mainly across the ipsilateral OFC, ACC, and anterior insula (AI), while patients in the temporal group (n = 9) had hypometabolism only in the OFC and AI. The ER results (n = 15) suggested distinct propagation pathways that allowed us to differentiate between the frontal and temporal groups. Pathologies included focal cortical dysplasia, dysembryoplastic neuroepithelial tumor, cavernous malformation, glial scar, and nonspecific findings. At a minimum follow-up of 12 months, 19 patients (70.4%) were seizure free, and Engel class II, III, and IV outcomes were observed in 4 patients (14.8%), 3 patients (11.1%), and 1 patient (3.7%), respectively.


The diagnosis of OFE requires careful presurgical evaluation. Based on their electrophysiological and metabolic evidence, the authors propose that varied semiological patterns could be explained by the extent of involvement of a network that includes at least the OFC, ACC, AI, and temporal lobe. Tailored resections for OFE may lead to a good overall outcome.

Restricted access

Marco Giulioni, Matteo Martinoni and Gianluca Marucci