Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Vivian P. Le x
  • Refine by Access: all x
Clear All Modify Search
Free access

Vijay Letchuman, Nitin Agarwal, Valli P. Mummaneni, Michael Y. Wang, Saman Shabani, Arati Patel, Joshua Rivera, Alexander F. Haddad, Vivian Le, Joyce M. Chang, Dean Chou, Seema Gandhi, and Praveen V. Mummaneni

OBJECTIVE

There is a learning curve for surgeons performing “awake” spinal surgery. No comprehensive guidelines have been proposed for the selection of ideal candidates for awake spinal fusion or decompression. The authors sought to formulate an algorithm to aid in patient selection for surgeons who are in the startup phase of awake spinal surgery.

METHODS

The authors developed an algorithm for selecting patients appropriate for awake spinal fusion or decompression using spinal anesthesia supplemented with mild sedation and local analgesia. The anesthetic protocol that was used has previously been reported in the literature. This algorithm was formulated based on a multidisciplinary team meeting and used in the first 15 patients who underwent awake lumbar surgery at a single institution.

RESULTS

A total of 15 patients who underwent decompression or lumbar fusion using the awake protocol were reviewed. The mean patient age was 61 ± 12 years, with a median BMI of 25.3 (IQR 2.7) and a mean Charlson Comorbidity Index of 2.1 ± 1.7; 7 patients (47%) were female. Key patient inclusion criteria were no history of anxiety, 1 to 2 levels of lumbar pathology, moderate stenosis and/or grade I spondylolisthesis, and no prior lumbar surgery at the level where the needle is introduced for anesthesia. Key exclusion criteria included severe and critical central canal stenosis or patients who did not meet the inclusion criteria. Using the novel algorithm, 14 patients (93%) successfully underwent awake spinal surgery without conversion to general anesthesia. One patient (7%) was converted to general anesthesia due to insufficient analgesia from spinal anesthesia. Overall, 93% (n = 14) of the patients were assessed as American Society of Anesthesiologists class II, with 1 patient (7%) as class III. The mean operative time was 115 minutes (± 60 minutes) with a mean estimated blood loss of 46 ± 39 mL. The median hospital length of stay was 1.3 days (IQR 0.1 days). No patients developed postoperative complications and only 1 patient (7%) required reoperation. The mean Oswestry Disability Index score decreased following operative intervention by 5.1 ± 10.8.

CONCLUSIONS

The authors propose an easy-to-use patient selection algorithm with the aim of assisting surgeons with patient selection for awake spinal surgery while considering BMI, patient anxiety, levels of surgery, and the extent of stenosis. The algorithm is specifically intended to assist surgeons who are in the learning curve of their first awake spinal surgery cases.

Restricted access

Andrew K. Chan, Robert K. Eastlack, Richard G. Fessler, Khoi D. Than, Dean Chou, Kai-Ming Fu, Paul Park, Michael Y. Wang, Adam S. Kanter, David O. Okonkwo, Pierce D. Nunley, Neel Anand, Juan S. Uribe, Gregory M. Mundis Jr., Shay Bess, Christopher I. Shaffrey, Vivian P. Le, Praveen V. Mummaneni, and the International Spine Study Group

OBJECTIVE

Previous studies have demonstrated the short-term radiographic and clinical benefits of circumferential minimally invasive surgery (cMIS) and hybrid (i.e., minimally invasive anterior or lateral interbody fusion with an open posterior approach) techniques to correct adult spinal deformity (ASD). However, it is not known if these benefits are maintained over longer periods of time. This study evaluated the 2- and 3-year outcomes of cMIS and hybrid correction of ASD.

METHODS

A multicenter database was retrospectively reviewed for patients undergoing cMIS or hybrid surgery for ASD. Patients were ≥ 18 years of age and had one of the following: maximum coronal Cobb angle (CC) ≥ 20°, sagittal vertical axis (SVA) > 5 cm, pelvic incidence–lumbar lordosis mismatch (PI-LL) ≥ 10°, or pelvic tilt (PT) > 20°. Radiographic parameters were evaluated at the latest follow-up. Clinical outcomes were compared at 2- and 3-year time points and adjusted for age, preoperative CC, levels operated, levels with interbody fusion, presence of L5–S1 anterior lumbar interbody fusion, and upper and lower instrumented vertebral level.

RESULTS

Overall, 197 (108 cMIS, 89 hybrid) patients were included with 187 (99 cMIS, 88 hybrid) and 111 (60 cMIS, 51 hybrid) patients evaluated at 2 and 3 years, respectively. The mean (± SD) follow-up duration for cMIS (39.0 ± 13.3 months, range 22–74 months) and hybrid correction (39.9 ± 16.8 months, range 22–94 months) were similar for both cohorts. Hybrid procedures corrected the CC greater than the cMIS technique (adjusted p = 0.022). There were no significant differences in postoperative SVA, PI-LL, PT, and sacral slope (SS). At 2 years, cMIS had lower Oswestry Disability Index (ODI) scores (adjusted p < 0.001), greater ODI change as a percentage of baseline (adjusted p = 0.006), less visual analog scale (VAS) back pain (adjusted p = 0.006), and greater VAS back pain change as a percentage of baseline (adjusted p = 0.001) compared to hybrid techniques. These differences were no longer significant at 3 years. At 3 years, but not 2 years, VAS leg pain was lower for cMIS compared to hybrid techniques (adjusted p = 0.032). Those undergoing cMIS had fewer overall complications compared to hybrid techniques (adjusted p = 0.006), but a higher odds of pseudarthrosis (adjusted p = 0.039).

CONCLUSIONS

In this review of a multicenter database for patients undergoing cMIS and hybrid surgery for ASD, hybrid procedures were associated with a greater CC improvement compared to cMIS techniques. cMIS was associated with superior ODI and back pain at 2 years, but this difference was no longer evident at 3 years. However, cMIS was associated with superior leg pain at 3 years. There were fewer complications following cMIS, with the exception of pseudarthrosis.