Search Results

You are looking at 1 - 10 of 69 items for

  • Author or Editor: Virginie Lafage x
Clear All Modify Search
Restricted access

Michael Akbar, Haidara Almansour, Renaud Lafage, Bassel G. Diebo, Bernd Wiedenhöfer, Frank Schwab, Virginie Lafage and Wojciech Pepke

OBJECTIVE

The goal of this study was to investigate the impact of thoracic and lumbar alignment on cervical alignment in patients with adolescent idiopathic scoliosis (AIS).

METHODS

Eighty-one patients with AIS who had a Cobb angle > 40° and full-length spine radiographs were included. Radiographs were analyzed using dedicated software to measure pelvic parameters (sacral slope [SS], pelvic incidence [PI], pelvic tilt [PT]); regional parameters (C1 slope, C0–C2 angle, chin-brow vertical angle [CBVA], slope of line of sight [SLS], McRae slope, McGregor slope [MGS], C2–7 [cervical lordosis; CL], C2–7 sagittal vertical axis [SVA], C2–T3, C2–T3 SVA, C2–T1 Harrison measurement [C2–T1 Ha], T1 slope, thoracic kyphosis [TK], lumbar lordosis [LL], and PI-LL mismatch); and global parameters (SVA). Patients were stratified by their lumbar alignment into hyperlordotic (LL > 59.7°) and normolordotic (LL 39.3° to 59.7°) groups and also, based on their thoracic alignment, into hypokyphotic (TK < −33.1°) and normokyphotic (TK −33.1° to −54.9°) groups. Finally, they were grouped based on their global alignment into either an anterior-aligned group or a posterior-aligned group.

RESULTS

The lumbar hyperlordotic group, in comparison to the normolordotic group, had a significantly larger LL, SS, PI (all p < 0.001), and TK (p = 0.014) and a significantly smaller PI-LL mismatch (p = 0.001). Lumbar lordosis had no influence on local cervical parameters.

The thoracic hypokyphotic group had a significantly larger PI-LL mismatch (p < 0.002) and smaller T1 slope (p < 0.001), and was significantly more posteriorly aligned than the normokyphotic group (−15.02 ± 8.04 vs 13.54 ± 6.17 [mean ± SEM], p = 0.006). The patients with hypokyphotic AIS had a kyphotic cervical spine (cervical kyphosis [CK]) (p < 0.001). Furthermore, a posterior-aligned cervical spine in terms of C2–7 SVA (p < 0.006) and C2–T3 SVA (p < 0.001) was observed in the thoracic hypokyphotic group.

Comparing patients in terms of global alignment, the posterior-aligned group had a significantly smaller T1 slope (p < 0.001), without any difference in terms of pelvic, lumbar, and thoracic parameters when compared to the anterior-aligned group. The posterior-aligned group also had a CK (−9.20 ± 1.91 vs 5.21 ± 2.95 [mean ± SEM], p < 0.001) and a more posterior-aligned cervical spine, as measured by C2–7 SVA (p = 0.003) and C2–T3 SVA (p < 0.001).

CONCLUSIONS

Alignment of the cervical spine is closely related to thoracic curvature and global alignment. In patients with AIS, a hypokyphotic thoracic alignment or posterior global alignment was associated with a global cervical kyphosis. Interestingly, upper cervical and cranial parameters were not statistically different in all investigated groups, meaning that the upper cervical spine was not recruited for compensation in order to maintain a horizontal gaze.

Restricted access

Antonio A. Faundez and Jean Charles Le Huec

Restricted access

Ziad Bakouny, Nour Khalil, Joeffroy Otayek, Aren Joe Bizdikian, Fares Yared, Michel Salameh, Naji Bou Zeid, Ismat Ghanem, Khalil Kharrat, Gaby Kreichati, Renaud Lafage, Virginie Lafage and Ayman Assi

OBJECTIVE

The Ames–International Spine Study Group (ISSG) classification has recently been proposed as a tool for adult cervical deformity evaluation. This classification includes three radiographic cervical sagittal modifiers that have not been evaluated in asymptomatic adults. The aim of this study was to determine whether the sagittal radiographic modifiers described in the Ames-ISSG cervical classification are encountered in asymptomatic adults without alteration of health-related quality of life (HRQOL).

METHODS

The authors conducted a cross-sectional study of subjects with an age ≥ 18 years and no cervical or back-related complaints or history of orthopedic surgery. All subjects underwent full-body biplanar radiographs with the measurement of cervical, segmental, and global alignment and completed the SF-36 HRQOL questionnaire. Subjects were classified according to the sagittal radiographic modifiers (chin-brow vertical angle [CBVA], mismatch between T1 slope and cervical lordosis [TS-CL], and C2–7 sagittal vertical axis [cSVA]) of the Ames–ISSG classification for cervical deformity, which also includes a qualitative descriptor of cervical deformity, the modified Japanese Orthopaedic Association (mJOA) myelopathy score, and the Scoliosis Research Society (SRS)–Schwab classification for spinal deformity assessment. Characteristics of the subjects classified by the different modifier grades were compared.

RESULTS

One hundred forty-one asymptomatic subjects (ages 18–59 years, 71 females) were enrolled in the study. Twenty-seven (19.1%) and 61 (43.3%) subjects were classified as grade 1 in terms of the TS-CL and CBVA modifiers, respectively. Ninety-eight (69.5%) and 4 (2.8%) were grade 2 for these same respective modifiers. One hundred thirty-six (96.5%) subjects had at least one modifier at grade 1 or 2. There was a significant relationship between patient age and grades of TS-CL (p < 0.001, Cramer’s V [CV] = 0.32) and CBVA (p = 0.04, CV = 0.22) modifiers. The HRQOL, global alignment, and segmental alignment parameters were similar among the subjects with different modifier grades (p > 0.05).

CONCLUSIONS

The CBVA and TS-CL radiographic modifiers of the Ames-ISSG classification do not seem to be specific to subjects with cervical deformities and can occur in asymptomatic subjects without alteration in HRQOL.

Full access

Emmanuelle Ferrero, Barthelemy Liabaud, Vincent Challier, Renaud Lafage, Bassel G. Diebo, Shaleen Vira, Shian Liu, Jean Marc Vital, Brice Ilharreborde, Themistocles S. Protopsaltis, Thomas J. Errico, Frank J. Schwab and Virginie Lafage

OBJECT

Previous forceplate studies analyzing the impact of sagittal-plane spinal deformity on pelvic parameters have demonstrated the compensatory mechanisms of pelvis translation in addition to rotation. However, the mechanisms recruited for this pelvic rotation were not assessed. This study aims to analyze the relationship between spinopelvic and lower-extremity parameters and clarify the role of pelvic translation.

METHODS

This is a retrospective study of patients with spinal deformity and full-body EOS images. Patients with only stenosis or low-back pain were excluded. Patients were grouped according to T-1 spinopelvic inclination (T1SPi): sagittal forward (forward, > 0.5°), neutral (−6.3° to 0.5°), or backward (< −6.3°). Pelvic translation was quantified by pelvic shift (sagittal offset between the posterosuperior corner of the sacrum and anterior cortex of the distal tibia), hip extension was measured using the sacrofemoral angle (SFA; the angle formed by the middle of the sacral endplate and the bicoxofemoral axis and the line between the bicoxofemoral axis and the femoral axis), and chin-brow vertical angle (CBVA). Univariate and multivariate analyses were used to compare the parameters and correlation with the Oswestry Disability Index (ODI).

RESULTS

In total, 336 patients (71% female; mean age 57 years; mean body mass index 27 kg/m2) had mean T1SPi values of −8.8°, −3.5°, and 5.9° in the backward, neutral, and forward groups, respectively. There were significant differences in the lower-extremity and spinopelvic parameters between T1SPi groups. The backward group had a normal lumbar lordosis (LL), negative SVA and pelvic shift, and the largest hip extension. Forward patients had a small LL and an increased SVA, with a large pelvic shift creating compensatory knee flexion. Significant correlations existed between lower-limb parameter and pelvic shift, pelvic tilt, T-1 pelvic angle, T1SPi, and sagittal vertical axis (0.3 < r < 0.8; p < 0.001). ODI was significantly correlated with knee flexion and pelvic shift.

CONCLUSIONS

This is the first study to describe full-body alignment in a large population of patients with spinal pathologies. Furthermore, patients categorized based on T1SPi were found to have significant differences in the pelvic shift and lower-limb compensatory mechanisms. Correlations between lower-limb angles, pelvic shift, and ODI were identified. These differences in compensatory mechanisms should be considered when evaluating and planning surgical intervention for adult patients with spinal deformity.

Restricted access

Christopher P. Ames, Justin S. Smith, Justin K. Scheer, Shay Bess, S. Samuel Bederman, Vedat Deviren, Virginie Lafage, Frank Schwab and Christopher I. Shaffrey

Sagittal spinal misalignment (SSM) is an established cause of pain and disability. Treating physicians must be familiar with the radiographic findings consistent with SSM. Additionally, the restoration or maintenance of physiological sagittal spinal alignment after reconstructive spinal procedures is imperative to achieve good clinical outcomes. The C-7 plumb line (sagittal vertical axis) has traditionally been used to evaluate sagittal spinal alignment; however, recent data indicate that the measurement of spinopelvic parameters provides a more comprehensive assessment of sagittal spinal alignment. In this review the authors describe the proper analysis of spinopelvic alignment for surgical planning. Online videos supplement the text to better illustrate the key concepts.

Full access

Bong Ju Moon, Justin S. Smith, Christopher P. Ames, Christopher I. Shaffrey, Virginie Lafage, Frank Schwab, Morio Matsumoto, Jong Sam Baik and Yoon Ha

OBJECT

To identify the characteristics of cervical deformities in Parkinson's disease (PD) and the role of severity of PD in the development of cervical spine deformities, the authors investigated the prevalence of the cervical deformities, cervical kyphosis (CK), and cervical positive sagittal malalignment (CPSM) in patients with PD. They also analyzed the association of severity of cervical deformities with the stage of PD in the context of global sagittal spinopelvic alignment.

METHODS

This study was a prospective assessment of consecutively treated patients (n = 89) with PD. A control group of the age- and sex-matched patients was selected from patients with degenerative cervical spine disease but without PD. Clinical and demographic parameters including age, sex, duration of PD, and Hoehn and Yahr (H&Y) stage were collected. Full-length standing radiographs were used to assess spinopelvic parameters. CK was defined as a C2–7 Cobb angle < 0°. CPSM was defined as C2–7 sagittal vertical axis (SVA) > 4 cm.

RESULTS

A significantly higher prevalence of CPSM (28% vs 1.1%, p < 0.001), but not CK (12% vs 10.1%, p = 0.635), was found in PD patients compared with control patients. Among patients with PD, those with CK were younger (62.1 vs 69.0 years, p = 0.013) and had longer duration of PD (56.4 vs 36.2 months, p = 0.034), but the severity of PD was not significantly different. Logistic regression analysis revealed that the presence of CK was associated with younger age, higher mismatch between pelvic incidence and lumbar lordosis, and lower C7–S1 SVA. The patients with CPSM had significantly greater thoracic kyphosis (TK) (p < 0.001) and a trend toward more advanced H&Y stage (p = 0.05). Logistic regression analysis revealed that CPSM was associated with male sex, greater TK, and more advanced H&Y stage.

CONCLUSIONS

Patients with PD have a significantly higher prevalence of CPSM compared with age- and sex-matched control patients with cervical degenerative disease but without PD. Among patients with PD, CK is not associated with the severity of PD but is associated with overall global sagittal malalignment. In contrast, the presence of CPSM is associated more with the severity of PD than it is with the presence of global sagittal malalignment. Collectively, these data suggest that the neuromuscular pathogenesis of PD may affect the development of CPSM more than of CK.

Full access

Shay Bess, Jeffrey E. Harris, Alexander W. L. Turner, Virginie LaFage, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab and Regis W. Haid Jr.

OBJECTIVE

Proximal junctional kyphosis (PJK) remains problematic following multilevel instrumented spine surgery. Previous biomechanical studies indicate that providing less rigid fixation at the cranial aspect of a long posterior instrumented construct, via transition rods or hooks at the upper instrumented vertebra (UIV), may provide a gradual transition to normal motion and prevent PJK. The purpose of this study was to evaluate the ability of posterior anchored polyethylene tethers to distribute proximal motion segment stiffness in long instrumented spine constructs.

METHODS

A finite element model of a T7–L5 spine segment was created to evaluate range of motion (ROM), intradiscal pressure, pedicle screw loads, and forces in the posterior ligament complex within and adjacent to the proximal terminus of an instrumented spine construct. Six models were tested: 1) intact spine; 2) bilateral, segmental pedicle screws (PS) at all levels from T-11 through L-5; 3) bilateral pedicle screws from T-12 to L-5 and transverse process hooks (TPH) at T-11 (the UIV); 4) pedicle screws from T-11 to L5 and 1-level tethers from T-10 to T-11 (TE-UIV+1); 5) pedicle screws from T-11 to L-5 and 2-level tethers from T-9 to T-11 (TE-UIV+2); and 6) pedicle screws and 3-level tethers from T-8 to T-11 (TE-UIV+3).

RESULTS

Proximal-segment range of motion (ROM) for the PS construct increased from 16% at UIV−1 to 91% at UIV. Proximal-segment ROM for the TPH construct increased from 27% at UIV−1 to 92% at UIV. Posterior tether constructs distributed ROM at the UIV and cranial adjacent segments most effectively; ROM for TE-UIV+1 was 14% of the intact model at UIV−1, 76% at UIV, and 98% at UIV+1. ROM for TE-UIV+2 was 10% at UIV−1, 51% at UIV, 69% at UIV+1, and 97% at UIV+2. ROM for TE-UIV+3 was 7% at UIV−1, 33% at UIV, 45% at UIV+1, and 64% at UIV+2. Proximal segment intradiscal pressures, pedicle screw loads, and ligament forces in the posterior ligament complex were progressively reduced with increasing number of posterior tethers used.

CONCLUSIONS

Finite element analysis of long instrumented spine constructs demonstrated that posterior tethers created a more gradual transition in ROM and adjacent-segment stress from the instrumented to the noninstrumented spine compared with all PS and TPH constructs. Posterior tethers may limit the biomechanical risk factor for PJK; however, further clinical research is needed to evaluate clinical efficacy.

Free access

Kseniya Slobodyanyuk, Caroline E. Poorman, Justin S. Smith, Themistocles S. Protopsaltis, Richard Hostin, Shay Bess, Gregory M. Mundis Jr., Frank J. Schwab and Virginie Lafage

Object

The goal of this study was to determine the outcome and risk factors in patients with adult spinal deformity (ASD) who elected to receive nonoperative care.

Methods

In this retrospective study the authors reviewed a nonoperative branch of the International Spine Study Group database, derived from 10 sites across the US. Specific inclusion criteria included nonoperative treatment for ASD and the availability of Scoliosis Research Society (SRS)-22 scores and radiographic data at baseline (BL) and at 1-year (1Y) follow-up. Health-related quality of life measures were assessed using the SRS-22 and radiographic data. Changes in SRS-22 scores were evaluated by domain and expressed in number of minimum clinically important differences (MCIDs) gained or lost; BL and 1Y scores were also compared with age- and sex-matched normative references.

Results

One hundred eighty-nine patients (mean age 53 years, 86% female) met inclusion criteria. Pain was the domain with the largest offset for 43% of patients, followed by the Appearance (23%), Activity (18%), and Mental (15%) domains. On average, patients improved 0.3 MCID in Pain over 1Y, without changes in Activity or Appearance. Baseline scores significantly impacted 1Y outcomes, with up to 85% of patients in the mildest category of deformity being classified as < 1 MCID of normative reference at 1Y, versus 0% of patients with the most severe initial deformity. Baseline radiographic parameters did not correlate with outcome.

Conclusions

Patients who received nonoperative care are significantly more disabled than age- and sex-matched normative references. The likelihood for a patient to reach SRS scores similar to the normative reference at 1Y decreases with increased BL disability. Nonoperative treatment is a viable option for certain patients with ASD, and up to 24% of patients demonstrated significant improvement over 1Y with nonoperative care.

Free access

Carolyn J. Sparrey, Jeannie F. Bailey, Michael Safaee, Aaron J. Clark, Virginie Lafage, Frank Schwab, Justin S. Smith and Christopher P. Ames

The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.

Free access

Michael P. Kelly, Lawrence G. Lenke, Christopher I. Shaffrey, Christopher P. Ames, Leah Y. Carreon, Virginie Lafage, Justin S. Smith and Adam L. Shimer

Object

The goal in this study was to evaluate the risk factors for complications, including new neurological deficits, in the largest cohort of patients with adult spinal deformity to date.

Methods

The Scoli-RISK-1 inclusion criteria were used to identify eligible patients from 5 centers who were treated between June 1, 2009, and June 1, 2011. Records were reviewed for patient demographic information, surgical data, and reports of perioperative complications. Neurological deficits were recorded as preexisting or as new deficits. Patients who underwent 3-column osteotomies (3COs) were compared with those who did not (posterior spinal fusion [PSF]). Between-group comparisons were performed using independent samples t-tests and chi-square analyses.

Results

Two hundred seven patients were identified—75 who underwent PSF and 132 treated with 3CO. In the latter group, patients were older (58.9 vs 49.4 years, p < 0.001), had a higher body mass index (29.0 vs 25.8, p = 0.029), smaller preoperative coronal Cobb measurements (33.8° vs 56.4°, p < 0.001), more preoperative sagittal malalignment (11.7 cm vs 5.4 cm, p < 0.001), and similar sagittal Cobb measurements (45.8° vs 57.7°, p = 0.113). Operating times were similar (393 vs 423 minutes, p = 0.130), although patients in the 3CO group sustained higher estimated blood loss (2120 vs 1700 ml, p = 0.066). Rates of new neurological deficits were similar (PSF: 6.7% vs 3CO: 9.9%, p = 0.389), and rates of any perioperative medical complication were similar (PSF: 46.7% vs 3CO: 50.8%, p = 0.571). Patients who underwent vertebral column resection (VCR) were more likely to sustain medical complications than those treated with pedicle subtraction osteotomy (73.7% vs 46.9%, p = 0.031), although new neurological deficits were similar (15.8% vs 8.8%, p = 0.348). Regression analysis did not reveal significant predictors of neurological injury or complication from collected data.

Conclusions

Despite higher estimated blood loss, rates of all complications (49.3%) and new neurological deficits (8.7%) did not vary for patients who underwent complex reconstruction, whether or not a 3CO was performed. Patients who underwent VCR sustained more medical complications without an increase in new neurological deficits. Prospective studies of patient factors, provider factors, and refined surgical data are needed to define and optimize risk factors for complication and neurological deficits.