Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Vibhu K. Viswanathan x
Clear All Modify Search
Restricted access

Vibhu K. Viswanathan, Sunil Kukreja, Amy J. Minnema and H. Francis Farhadi

OBJECTIVE

Proximal junctional kyphosis (PJK) can progress to proximal junctional failure (PJF), a widely recognized early and serious complication of multisegment spinal instrumentation for the treatment of adult spinal deformity (ASD). Sublaminar band placement has been suggested as a possible technique to prevent PJK and PJF but carries the theoretical possibility of a paradoxical increase in these complications as a result of the required muscle dissection and posterior ligamentous disruption. In this study, the authors prospectively assess the safety as well as the early clinical and radiological outcomes of sublaminar band insertion at the upper instrumented vertebra (UIV) plus 1 level (UIV+1).

METHODS

Between August 2015 and February 2017, 40 consecutive patients underwent either upper (T2–4) or lower (T8–10) thoracic sublaminar band placement at the UIV+1 during long-segment thoracolumbar arthrodesis surgery. Outcome measures were prospectively collected and uploaded to a web-based REDCap database specifically designed to include demographic, clinical, and radiological data. All patients underwent clinical assessment, as well as radiological assessment with anteroposterior and lateral 36-inch whole-spine standing radiographs both pre- and postoperatively.

RESULTS

Forty patients (24 women and 16 men) were included in this study. Median age at surgery was 64.0 years with an IQR of 57.7–70.0 years. Median follow-up was 12 months (IQR 6–15 months). Three procedure-related complications were noted, including 2 intraoperative cerebrospinal spinal fluid leaks and 1 transient neurological deficit. Median visual analog scale (VAS) scores for back pain significantly improved after surgery (preoperatively: 8.0, IQR 6.0–10.0; 1-year follow-up: 2.0, IQR 0.0–6.0; p = 0.001). Median Oswestry Disability Index (version 2.1a) scores also significantly improved after surgery (preoperatively: 56.0, IQR 45.0–64.0; 1-year follow-up: 46.0, IQR 22.2–54.0; p < 0.001). Sagittal vertical axis (preoperatively: 9.0 cm, IQR 5.3–11.6 cm; final follow-up: 4.7 cm, IQR 2.0–6.6 cm; p < 0.001), pelvic incidence-lumbar lordosis mismatch (24.7°, IQR 11.2°–31.2°; 7.7°, IQR −1.2° to 19.5°; p < 0.001), and pelvic tilt (28.7°, IQR 20.4°–32.6°; 17.1°, IQR 10.8°–25.2°; p < 0.001) were all improved at the final follow-up. While proximal junctional (PJ) Cobb angles increased overall at the final follow-up (preoperatively: 4.2°, IQR 1.9°–7.4°; final follow-up: 8.0°, IQR 5.8°–10.3°; p = 0.002), the significant increase was primarily noted starting at the immediate postoperative time point (7.2°, IQR 4.4°–11.8°; p = 0.001) and not beyond. Three patients (7.5%) developed radiological PJK (mean ΔPJ Cobb 15.5°), while there were no instances of PJF in this cohort.

CONCLUSIONS

Sublaminar band placement at the UIV+1 during long-segment thoracolumbar instrumented arthrodesis is relatively safe and is not associated with an increased rate of PJK. Moreover, no subjects developed PJF. Prospective large-scale and long-term analysis is needed to define the potential benefit of sublaminar bands in reducing the incidence of PJK and PJF following surgery for ASD.

Clinical trial registration no.: NCT02411799 (clinicaltrials.gov)

Restricted access

Vibhu K. Viswanathan, Ranjit Ganguly, Amy J. Minnema, Nicole A. DeVries Watson, Nicole M. Grosland, Douglas C. Fredericks, Andrew J. Grossbach, Stephanus V. Viljoen and H. Francis Farhadi

OBJECTIVE

Proximal junctional kyphosis (PJK) and failure (PJF) are potentially catastrophic complications that result from abrupt changes in stress across rigid instrumented and mobile non-fused segments of the spine (transition zone) after adult spinal deformity surgery. Recently, data have indicated that extension (widening) of the transitional zone via use of proximal junctional (PJ) semi-rigid fixation can mitigate this complication. To assess the biomechanical effectiveness of 3 semi-rigid fixation constructs (compared to pedicle screw fixation alone), the authors performed cadaveric studies that measured the extent of PJ motion and intradiscal pressure changes (ΔIDP).

METHODS

To measure flexibility and ΔIDP at the PJ segments, moments in flexion, extension, lateral bending (LB), and torsion were conducted in 13 fresh-frozen human cadaveric specimens. Five testing cycles were conducted, including intact (INT), T10–L2 pedicle screw-rod fixation alone (PSF), supplemental hybrid T9 Mersilene tape insertion (MT), hybrid T9 sublaminar band insertion (SLB1), and hybrid T8/T9 sublaminar band insertion (SLB2).

RESULTS

Compared to PSF, SLB1 significantly reduced flexibility at the level rostral to the upper-instrumented vertebral level (UIV+1) under moments in 3 directions (flexion, LB, and torsion, p ≤ 0.01). SLB2 significantly reduced motion in all directions at UIV+1 (flexion, extension, LB, torsion, p < 0.05) and at UIV+2 (LB, torsion, p ≤ 0.03). MT only reduced flexibility in extension at UIV+1 (p = 0.02). All 3 constructs revealed significant reductions in ΔIDP at UIV+1 in flexion (MT, SLB1, SLB2, p ≤ 0.02) and torsion (MT, SLB1, SLB2, p ≤ 0.05), while SLB1 and SLB2 significantly reduced ΔIDP in extension (SLB1, SLB2, p ≤ 0.02) and SLB2 reduced ΔIDP in LB (p = 0.05). At UIV+2, SLB2 similarly significantly reduced ΔIDP in extension, LB, and torsion (p ≤ 0.05).

CONCLUSIONS

Compared to MT, the SLB1 and SLB2 constructs significantly reduced flexibility and ΔIDP in various directions through the application of robust anteroposterior force vectors at UIV+1 and UIV+2. These findings indicate that semi-rigid sublaminar banding can most effectively expand the transition zone and mitigate stresses at the PJ levels of long-segment thoracolumbar constructs.

Restricted access

Vibhu K. Viswanathan, Ranjit Ganguly, Amy J. Minnema, Nicole A. DeVries Watson, Nicole M. Grosland, Douglas C. Fredericks, Andrew J. Grossbach, Stephanus V. Viljoen and H. Francis Farhadi

OBJECTIVE

Proximal junctional kyphosis (PJK) and failure (PJF) are potentially catastrophic complications that result from abrupt changes in stress across rigid instrumented and mobile non-fused segments of the spine (transition zone) after adult spinal deformity surgery. Recently, data have indicated that extension (widening) of the transitional zone via use of proximal junctional (PJ) semi-rigid fixation can mitigate this complication. To assess the biomechanical effectiveness of 3 semi-rigid fixation constructs (compared to pedicle screw fixation alone), the authors performed cadaveric studies that measured the extent of PJ motion and intradiscal pressure changes (ΔIDP).

METHODS

To measure flexibility and ΔIDP at the PJ segments, moments in flexion, extension, lateral bending (LB), and torsion were conducted in 13 fresh-frozen human cadaveric specimens. Five testing cycles were conducted, including intact (INT), T10–L2 pedicle screw-rod fixation alone (PSF), supplemental hybrid T9 Mersilene tape insertion (MT), hybrid T9 sublaminar band insertion (SLB1), and hybrid T8/T9 sublaminar band insertion (SLB2).

RESULTS

Compared to PSF, SLB1 significantly reduced flexibility at the level rostral to the upper-instrumented vertebral level (UIV+1) under moments in 3 directions (flexion, LB, and torsion, p ≤ 0.01). SLB2 significantly reduced motion in all directions at UIV+1 (flexion, extension, LB, torsion, p < 0.05) and at UIV+2 (LB, torsion, p ≤ 0.03). MT only reduced flexibility in extension at UIV+1 (p = 0.02). All 3 constructs revealed significant reductions in ΔIDP at UIV+1 in flexion (MT, SLB1, SLB2, p ≤ 0.02) and torsion (MT, SLB1, SLB2, p ≤ 0.05), while SLB1 and SLB2 significantly reduced ΔIDP in extension (SLB1, SLB2, p ≤ 0.02) and SLB2 reduced ΔIDP in LB (p = 0.05). At UIV+2, SLB2 similarly significantly reduced ΔIDP in extension, LB, and torsion (p ≤ 0.05).

CONCLUSIONS

Compared to MT, the SLB1 and SLB2 constructs significantly reduced flexibility and ΔIDP in various directions through the application of robust anteroposterior force vectors at UIV+1 and UIV+2. These findings indicate that semi-rigid sublaminar banding can most effectively expand the transition zone and mitigate stresses at the PJ levels of long-segment thoracolumbar constructs.