Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Tsinsue Chen x
Clear All Modify Search
Restricted access

Fangxiang Chen, Tsinsue Chen and Peter Nakaji

Object

The coronal suture is often used as an empirical landmark for the entry point for endoscopic third ventriculostomy. The trajectory for the approach is often drawn based on midsagittal MRI findings. However, because the coronal suture is not perpendicular to the midline, this method may be inaccurate.

Methods

The junction of the coronal and sagittal sutures was exposed at the outer table of the cranium of 15 cadavers. An ideal coronal line was established perpendicular to the sagittal suture at the junction of the sagittal and coronal sutures. The distance from this ideal coronal line at the level of the coronal-sagittal junction to the actual coronal suture was measured at 1-cm intervals. The measured distance between the 2 planes was termed the distance to the coronal suture.

Results

The coronal suture bows forward as it moves from medial to lateral. From 1–6 cm lateral to the sagittal suture, the distance to the coronal suture was 0.1, 0.3, 0.5, 0.8, 1.0, and 1.4 cm, respectively. There was no significant difference between the right and left sides.

Conclusions

The position of a bur hole for endoscopic third ventriculostomy should be moved posteriorly with respect to the coronal suture the more laterally it is placed. Although the adjustment is small, it may be crucial. Failure to make this adjustment may result in suboptimal bur hole placement and increase the risk of morbidity.

Free access

James J. Zhou, Tsinsue Chen, S. Harrison Farber, Andrew G. Shetter and Francisco A. Ponce

OBJECTIVE

The field of deep brain stimulation (DBS) for epilepsy has grown tremendously since its inception in the 1970s and 1980s. The goal of this review is to identify and evaluate all studies published on the topic of open-loop DBS for epilepsy over the past decade (2008 to present).

METHODS

A PubMed search was conducted to identify all articles reporting clinical outcomes of open-loop DBS for the treatment of epilepsy published since January 1, 2008. The following composite search terms were used: (“epilepsy” [MeSH] OR “seizures” [MeSH] OR “kindling, neurologic” [MeSH] OR epilep* OR seizure* OR convuls*) AND (“deep brain stimulation” [MeSH] OR “deep brain stimulation” OR “DBS”) OR (“electric stimulation therapy” [MeSH] OR “electric stimulation therapy” OR “implantable neurostimulators” [MeSH]).

RESULTS

The authors identified 41 studies that met the criteria for inclusion. The anterior nucleus of the thalamus, centromedian nucleus of the thalamus, and hippocampus were the most frequently evaluated targets. Among the 41 articles, 19 reported on stimulation of the anterior nucleus of the thalamus, 6 evaluated stimulation of the centromedian nucleus of the thalamus, and 9 evaluated stimulation of the hippocampus. The remaining 7 articles reported on the evaluation of alternative DBS targets, including the posterior hypothalamus, subthalamic nucleus, ventral intermediate nucleus of the thalamus, nucleus accumbens, caudal zone incerta, mammillothalamic tract, and fornix. The authors evaluated each study for overall epilepsy response rates as well as adverse events and other significant, nonepilepsy outcomes.

CONCLUSIONS

Level I evidence supports the safety and efficacy of stimulating the anterior nucleus of the thalamus and the hippocampus for the treatment of medically refractory epilepsy. Level III and IV evidence supports stimulation of other targets for epilepsy. Ongoing research into the efficacy, adverse effects, and mechanisms of open-loop DBS continues to expand the knowledge supporting the use of these treatment modalities in patients with refractory epilepsy.

Full access

Tsinsue Chen, Zaman Mirzadeh, Kristina Chapple, Margaret Lambert and Francisco A. Ponce

OBJECTIVE

As the number of deep brain stimulation (DBS) procedures performed under general anesthesia (“asleep” DBS) increases, it is more important to assess the rates of adverse events, inpatient lengths of stay (LOS), and 30-day readmission rates in patients undergoing these procedures compared with those in patients undergoing traditional “awake” DBS without general anesthesia.

METHODS

All patients in an institutional database who had undergone awake or asleep DBS procedures performed by a single surgeon between August 2011 and August 2014 were reviewed. Adverse events, inpatient LOS, and 30-day readmissions were analyzed.

RESULTS

A total of 490 electrodes were placed in 284 patients, of whom 126 (44.4%) underwent awake surgery and 158 (55.6%) underwent asleep surgery. The most frequent overall complication for the cohort was postoperative mental status change (13 patients [4.6%]), followed by hemorrhage (4 patients [1.4%]), seizure (4 patients [1.4%]), and hardware-related infection (3 patients [1.1%]). Mean LOS for all 284 patients was 1.19 ± 1.29 days (awake: 1.06 ± 0.46 days; asleep: 1.30 ± 1.67 days; p = 0.08). Overall, the 30-day readmission rate was 1.4% (1 awake patient, 3 asleep patients). There were no significant differences in complications, LOS, and 30-day readmissions between awake and asleep groups.

CONCLUSIONS

Both awake and asleep DBS can be performed safely with low complication rates. The authors found no significant differences between the 2 procedure groups in adverse events, inpatient LOS, and 30-day readmission rates.

Full access

Tsinsue Chen, Zaman Mirzadeh, Kristina Chapple, Margaret Lambert, Rohit Dhall and Francisco A. Ponce

OBJECT

Deep brain stimulation (DBS) performed under general anesthesia (“asleep” DBS) has not been previously reported for essential tremor. This is in part due to the inability to visualize the target (the ventral intermediate nucleus [VIM]) on MRI. The authors evaluate the efficacy of this asleep technique in treating essential tremor by indirect VIM targeting.

METHODS

The authors retrospectively reviewed consecutive cases of initial DBS for essential tremor performed by a single surgeon. DBS was performed with patients awake (n = 40, intraoperative test stimulation without microelectrode recording) or asleep (n = 17, under general anesthesia). Targeting proceeded with standardized anatomical coordinates on preoperative MRI. Intraoperative CT was used for stereotactic registration and lead position confirmation. Functional outcomes were evaluated with pre- and postoperative Bain and Findley Tremor Activities of Daily Living scores.

RESULTS

A total of 29 leads were placed in asleep patients, and 60 were placed in awake patients. Bain and Findley Tremor Activities of Daily Living Questionnaire scores were not significantly different preoperatively for awake versus asleep cohorts (p = 0.2). The percentage of postoperative improvement was not significantly different between asleep (48.6%) and awake (45.5%) cohorts (p = 0.35). Euclidean error (mm) was higher for awake versus asleep patients (1.7 ± 0.8 vs 1.2 ± 0.4, p = 0.01), and radial error (mm) trended higherfor awake versus asleep patients (1.3 ± 0.8 vs 0.9 ± 0.5, p = 0.06). There were no perioperative complications.

CONCLUSIONS

In the authors’ initial experience, asleep VIM DBS for essential tremor without intraoperative test stimulation can be performed safely and effectively.

Full access

Paul T. Cantey, Mark Eberhard, Jessica Weeks, Sara Swoboda and G. Amin Ostovar

Free access

Sirin Gandhi, Tsinsue Chen, Justin R. Mascitelli, Claudio Cavallo, Mohamed A. Labib, Michael J. Lang and Michael T. Lawton

This video illustrates a contralateral supracerebellar transtentorial (cSCTT) approach for resection of a ruptured thalamic cavernous malformation in a 56-year-old woman with progressive right-sided homonymous hemianopsia. The patient was placed in the sitting position, and a torcular craniotomy was performed for the cSCTT approach. The lesion was resected completely. Postoperatively, the patient had intact motor strength and baseline visual field deficits with moderate right-sided paresthesias. The cSCTT approach maximizes the lateral surgical reach without the cortical transgression seen with alternative transcortical routes.1 Contralaterality is a defining feature, with entry of the neurosurgeon’s instruments from the craniotomy edge of the craniotomy, contralateral to the lesion, allowing access to the lateral aspect of the lesion. The sitting position facilitates gravity-assisted cerebellar retraction and enhances the superior reach of this approach (Used with permission from Barrow Neurological Institute, Phoenix, Arizona).

The video can be found here: https://youtu.be/lqB9mu_T8NQ.

Full access

Tsinsue Chen, Karam Moon, Daphne E. deMello, Iman Feiz-Erfan, Nicholas Theodore and Ratan D. Bhardwaj

A 13-year-old boy presented with fever and neck pain and stiffness, which was initially misdiagnosed as culture-negative meningitis. Magnetic resonance images of the brain and cervical spine demonstrated what appeared to be an intradural extramedullary mass at the C1–3 level, resulting in moderate cord compression, and a Chiari Type I malformation. The patient underwent a suboccipital craniectomy and a C1–3 laminectomy with intradural exploration for excisional biopsy and resection. The lesion containing the parasite was extradural, extending laterally through the C2–3 foramina. Inflammatory tissue secondary to Onchocerca lupi infection was identified, and treatment with steroids and doxycycline was initiated. At the 6-month follow-up, the patient remained asymptomatic, with MR images demonstrating a significant reduction in lesional size. However, 10 weeks postoperatively, the infection recurred, necessitating a second operation. The patient was treated with an additional course of doxycycline and is currently maintained on ivermectin therapy. This is the second reported case of cervical O. lupi infection in a human. In the authors' experience, oral doxycycline alone was insufficient in controlling the disease, and the addition of ivermectin therapy was necessary.

Restricted access

Tsinsue Chen, Zaman Mirzadeh, Kristina M. Chapple, Margaret Lambert, Holly A. Shill, Guillermo Moguel-Cobos, Alexander I. Tröster, Rohit Dhall and Francisco A. Ponce

OBJECTIVE

Recent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution.

METHODS

PD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events.

RESULTS

Six-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively).

CONCLUSIONS

In PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.

Full access

Tsinsue Chen, Zaman Mirzadeh, Kristina M. Chapple, Margaret Lambert, Virgilio G. H. Evidente, Guillermo Moguel-Cobos, Srivadee Oravivattanakul, Padma Mahant and Francisco A. Ponce

OBJECTIVE

Ventral intermediate nucleus deep brain stimulation (DBS) for essential tremor is traditionally performed with intraoperative test stimulation and conscious sedation, without general anesthesia (GA). Recently, the authors reported retrospective data on 17 patients undergoing DBS after induction of GA with standardized anatomical coordinates on T1-weighted MRI sequences used for indirect targeting. Here, they compare prospectively collected data from essential tremor patients undergoing DBS both with GA and without GA (non-GA).

METHODS

Clinical outcomes were prospectively collected at baseline and 3-month follow-up for patients undergoing DBS surgery performed by a single surgeon. Stereotactic, euclidean, and radial errors of lead placement were calculated. Functional (activities of daily living), quality of life (Quality of Life in Essential Tremor [QUEST] questionnaire), and tremor severity outcomes were compared between groups.

RESULTS

Fifty-six patients underwent surgery: 16 without GA (24 electrodes) and 40 with GA (66 electrodes). The mean baseline functional scores and QUEST summary indices were not different between groups (p = 0.91 and p = 0.59, respectively). Non-GA and GA groups did not differ significantly regarding mean postoperative percentages of functional improvement (non-GA, 47.9% vs GA, 48.1%; p = 0.96) or QUEST summary indices (non-GA, 79.9% vs GA, 74.8%; p = 0.50). Accuracy was comparable between groups (mean radial error 0.9 ± 0.3 mm for non-GA and 0.9 ± 0.4 mm for GA patients) (p = 0.75). The mean euclidean error was also similar between groups (non-GA, 1.1 ± 0.6 mm vs GA, 1.2 ± 0.5 mm; p = 0.92). No patient had an intraoperative complication, and the number of postoperative complications was not different between groups (non-GA, n = 1 vs GA, n = 10; p = 0.16).

CONCLUSIONS

DBS performed with the patient under GA to treat essential tremor is as safe and effective as traditional DBS surgery with intraoperative test stimulation while the patient is under conscious sedation without GA.