Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Todd J. Albert x
Clear All Modify Search
Full access

Alexander R. Vaccaro, Matthew M. Robbins, Luke Madigan, Todd J. Albert, William Smith and Alan S. Hilibrand

Object

In this pilot study the authors assessed the efficacy of bioabsorbable interbody spacers in the treatment of cervical degenerative disease. Metallic cages or interbody spacers have been widely used in the treatment of degenerative and traumatic cervical disease. Bioabsorbable technology has been used to develop a resorbable cage that can eliminate the complications and drawbacks seen with the use of traditional metallic implants. In general clinical practice bioabsorbable implants have shown the ability to degrade safely while demonstrating optimal imaging characteristics as a result of their radiolucency, and these devices eliminate stress shielding by their gradual dissolution.

Methods

This study is a retrospective evaluation of charts and x-ray films obtained in the first eight patients who underwent an anterior cervical decompression and fusion procedure with placement of a bioabsorbable interbody spacer and anterior cervical plate. All patients were treated in one surgeon's practice and had a minimum follow-up period of at least 6 months. At a follow-up interval of approximately 7 months, five patients exhibited an excellent result and three had a good result; no patient was noted to have a satisfactory or poor outcome according to the Odom criteria at their most recent follow-up visit. Seventeen (94%) of 18 grafted levels appeared to be solidly fused. One patient experienced a perisurgical complication consisting of a symptomatic hematoma, which was successfully drained.

Conclusions

Bioabsorbable interbody spacers appear to be a safe and effective interbody implant in terms of clinical outcome and radiographically confirmed healing.

Restricted access

Timing of surgical stabilization after cervical and thoracic trauma

Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004

Todd J. Albert and David H. Kim

✓ Appropriate timing for surgical intervention following destabilizing cervical or thoracic spine trauma remains controversial. Clinical investigators have failed to provide convincing evidence that the timing of surgery significantly affects neurological outcome in most situations. Nevertheless, early surgical stabilization of the injured spine has been shown to provide significant nonneurological benefits such as more rapid patient mobilization, facilitation of treating associated injuries, reduction in rates of pulmonary and pressure sore complications, reduction in duration of intensive care unit and hospital stays, and a decrease in overall medical costs.

The findings of basic science studies have improved our understanding of the molecular and cellular events surrounding initial and secondary spinal cord injury (SCI), and analysis of these findings suggests that the early postinjury period may present a unique opportunity for meaningful intervention. This possibility has been supported by results obtained in animal studies that demonstrate the potential for improving functional outcome when surgical intervention is performed within a few hours following experimental SCI. Despite the absence of significant neurological recovery in most clinical studies, the results of most recent clinical studies strongly support the overall clinical benefits of early surgical intervention, particularly in the setting of unstable thoracic spinal column injury with associated SCI. Based on the best available scientific and clinical evidence, the authors report that it is therefore recommended that surgical stabilization be performed in as timely a fashion as possible, particularly for unstable thoracic spine trauma, within the constraints of the patient's overall medical condition and availability of appropriate resources.

Restricted access

Daniel R. Fassett, James S. Harrop, Mitchell Maltenfort, Shiveindra B. Jeyamohan, John D. Ratliff, D. Greg Anderson, Alan S. Hilibrand, Todd J. Albert, Alexander R. Vaccaro and Ashwini D. Sharan

Object

The authors undertook this study to evaluate the incidence of spinal cord injury (SCI) in geriatric patients (≥ 70 years of age) and examine the impact of patient age, extent of neurological injury, and spinal level of injury on the mortality rate associated with traumatic SCI.

Methods

A prospectively maintained SCI database (3481 patients) at a single institution was retrospectively studied for the period from 1978 through 2005. Parameters analyzed included patient age, admission American Spinal Injury Association (ASIA) motor score, level of SCI, mechanism of injury, and mortality data. The data pertaining to the 412 patients 70 years of age and older were compared with those pertaining to the younger cohort using a chi-square analysis.

Results

Since 1980, the number of SCI-related hospital admissions per year have increased fivefold in geriatric patients and the percentage of geriatric patients within the SCI population has increased from 4.2 to 15.4%. In comparison with younger patients, geriatric patients were found to be less likely to have severe neurological deficits (greater percentage of ASIA Grades C and D injuries), but the mortality rates were higher in the older age group both for the period of hospitalization (27.7% compared with 3.2%, p < 0.001) and during 1-year follow-up. The mortality rates in this older population directly correlate with the severity of neurological injury (1-year mortality rate, ASIA Grade A 66%, Grade D 23%, p < 0.001). The mortality rate in elderly patients with SCI has not changed significantly over the last two decades, and the 1-year mortality rate was greater than 40% in all periods analyzed.

Conclusions

Spinal cord injuries in older patients are becoming more prevalent. The mortality rate in this patient group is much greater than in younger patients and should be taken into account when aggressive interventions are considered and in counseling families regarding prognosis.

Restricted access

Avraam Ploumis, Todd J. Albert, Zoe Brown, Amir A. Mehbod and Ensor E. Transfeldt

Object

The objective of this study was to examine the efficacy and safety of Healos graft carrier with bone marrow aspirate and local autograft compared with the results of allograft in patients with lumbar degenerative scoliosis undergoing posterolateral fusion.

Methods

Twenty-eight patients with degenerative scoliosis underwent posterolateral instrumented fusion and decompression. Patients were grouped according to the graft used. Group A consisted of 12 cases in which the authors used a Healos graft carrier, bone marrow aspirate, and local autograft, and Group B consisted of 16 cases in which the authors used cancellous allograft and local autograft. Patients were followed for a minimum of 2 years postoperatively in terms of pain (visual analog scale), function (Oswestry Disability Index), curve magnitude (Cobb angle), and fusion status (plain and dynamic radiographs). The 2 groups did not differ statistically significantly (p > 0.05) in age, sex, smoking habits, magnitude of preoperative visual analog scale score, Oswestry Disability Index score, Cobb angle, or number of levels requiring decompression and fusion.

Results

The groups had similar (p > 0.05) results in terms of pain, function, curve progression, and fusion rates at the 2-year follow-up examination. Radiographic fusion was achieved in all but 2 cases, 1 in each group, in which the patients were asymptomatic. Patients in the allograft group (Group B) showed evidence of fusion earlier than in the Healos group (p < 0.05). No toxicity from Healos graft was recorded.

Conclusions

The combination of Healos hydroxyapatite sponge and bone marrow aspirate plus local allograft had significantly slower fusion rates but equal clinical outcomes compared with cancellous allograft plus local autograft when used for posterolateral fusion in patients with degenerative lumbar scoliosis.

Restricted access

D. Greg Anderson, Worawat Limthongkul, Amirali Sayadipour, Christopher K. Kepler, James S. Harrop, Mitchell Maltenfort, Alexander R. Vaccaro, Alan Hilibrand, Jeffrey A. Rihn and Todd J. Albert

Object

Lumbar degenerative spondylolisthesis (LDS) is common and has generally been characterized as a homogeneous disease entity in the literature and in clinical practice. Because disease variability has not been carefully characterized, stratification of treatment recommendations based on scientific evidence is currently lacking. In this study, the authors analyzed radiographic parameters of patients with LDS at the L4–5 level to better characterize this entity.

Methods

Demographic data were collected from 304 patients (200 women and 104 men) with LDS at the L4–5 level. Plain radiographs including anteroposterior, lateral, and flexion-extension lateral radiographs were analyzed for disc height, segmental angulation, segmental translation, and osteophyte formation. Correlations were sought between the variables of age, sex, disc height, segmental angulation, segmental translation, and osteophyte formation.

Results

The mean patient age was 63.8 years (range 40–86 years). The mean mid-disc height was 7 mm (range 0–14 mm) on the neutral lateral view. The mean angulation between the superior endplate of L-5 and the inferior endplate of L-4 was 6° of lordosis (range 13° of kyphosis to 23° lordosis) on the neutral lateral view. The mean angular change between flexion and extension lateral radiographs was 5° (range 0°–17°). The mean translation on the neutral lateral view was 6 mm (range 0–15 mm). The mean change in translational between flexion and extension was 2 mm (range 0–11 mm). Twenty patients (7%) exhibited spondylolisthesis only on the flexion view. A significant positive correlation was found between the change in angulation and the change in translation on flexion and extension views (ρ = 0.18, p = 0.001). No significant correlation was found between anterior osteophyte size and mobility with flexion-extension radiographs.

Conclusions

The wide range in all radiographic parameters for LDS confirms the heterogeneous nature of this condition and suggests that a grading system to subclassify LDS may be clinically useful. On flexion and extension radiographs, increased translational motion correlated with increased angular motion. Anterior osteophyte size was not found to be predictive of segmental stability. This data set should prove beneficial to those seeking to subcategorize LDS in the future.

Restricted access

Kristen Radcliff, Christopher K. Kepler, Todd A. Rubin, Motasem Maaieh, Alan S. Hilibrand, James Harrop, Jeffrey A. Rihn, Todd J. Albert and Alexander R. Vaccaro

Object

The load-sharing score (LSS) of vertebral body comminution is predictive of results after short-segment posterior instrumentation of thoracolumbar burst fractures. Some authors have posited that an LSS > 6 is predictive of neurological injury, ligamentous injury, and the need for surgical intervention. However, the authors of the present study hypothesized that the LSS does not predict ligamentous or neurological injury.

Methods

The prospectively collected spinal cord injury database from a single institution was queried for thoracolumbar burst fractures. Study inclusion criteria were acute (< 24 hours) burst fractures between T-10 and L-2 with preoperative CT and MRI. Flexion-distraction injuries and pathological fractures were excluded. Four experienced spine surgeons determined the LSS and posterior ligamentous complex (PLC) integrity. Neurological status was assessed from a review of the medical records.

Results

Forty-four patients were included in the study. There were 4 patients for whom all observers assigned an LSS > 6, recommending operative treatment. Eleven patients had LSSs ≤ 6 across all observers, suggesting that nonoperative treatment would be appropriate. There was moderate interobserver agreement (0.43) for the overall LSS and fair agreement (0.24) for an LSS > 6. Correlations between the LSS and the PLC score averaged 0.18 across all observers (range −0.02 to 0.34, p value range 0.02–0.89). Correlations between the LSS and the American Spinal Injury Association motor score averaged −0.12 across all observers (range −0.25 to −0.03, p value range 0.1–0.87). Correlations describing the relationship between an LSS > 6 and the treating physician's decision to operate averaged 0.17 across all observers (range 0.11–0.24, p value range 0.12–0.47).

Conclusions

The LSS does not uniformly correlate with the PLC injury, neurological status, or empirical clinical decision making. The LSSs of only one observer correlated significantly with PLC injury. There were no significant correlations between the LSS as determined by any observer and neurological status or clinical decision making.

Restricted access

Yong Hu, Christopher K. Kepler, Todd J. Albert, Zhen-shan Yuan, Wei-hu Ma, Yong-jie Gu and Rong-ming Xu

Object

The aims of this study were to evaluate a large series of posterior C-1 lateral mass screws (LMSs) to determine accuracy based on CT scanning findings and to assess the perioperative complication rate related to errant screw placement.

Methods

Accuracy of screw placement was evaluated using postoperative CT scans obtained in 196 patients with atlantoaxial instability. Radiographic analysis included measurement of preoperative and postoperative CT scans to evaluate relevant anatomy and classify accuracy of instrumentation placement. Screws were graded using the following definitions: Type I, screw threads completely within the bone (ideal); Type II, less than half the diameter of the screw violates the surrounding cortex (safe); and Type III, clear violation of transverse foramen or spinal canal (unacceptable).

Results

A total of 390 C-1 LMSs were placed, but 32 screws (8.2%) were excluded from accuracy measurements because of a lack of postoperative CT scans; patients in these cases were still included in the assessment of potential clinical complications based on clinical records. Of the 358 evaluable screws with postoperative CT scanning, 85.5% of screws (Type I) were rated as being in the ideal position, 11.7% of screws (Type II) were rated as occupying a safe position, and 10 screws (2.8%) were unacceptable (Type III). Overall, 97.2% of screws were rated Type I or II. Of the 10 screws that were unacceptable on postoperative CT scans, there were no known associated neurological or vertebral artery (VA) injuries. Seven unacceptable screws erred medially into the spinal canal, and 2 patients underwent revision surgery for medial screws. In 2 patients, unilateral C-1 LMSs penetrated the C-1 anterior cortex by approximately 4 mm. Neither patient with anterior C-1 penetration had evidence of internal carotid artery or hypoglossal nerve injury. Computed tomography scanning showed partial entry of C-1 LMSs into the VA foramen of C-1 in 10 cases; no occlusion, associated aneurysm, or fistula of the VA was found. Two patients complained of postoperative occipital neuralgia. This was transient in one patient and resolved by 2 months after surgery. The second patient developed persistent neuralgia, which remained 2 years after surgery, necessitating referral to the pain service.

Conclusions

The technique for freehand C-1 LMS fixation appears to be safe and effective without intraoperative fluoroscopy guidance. Preoperative planning and determination of the ideal screw insertion point, the ideal trajectory, and screw length are the most important considerations. In addition, fewer malpositioned screws were inserted as the study progressed, suggesting a learning curve to the technique.