Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Tobias Clausen x
Clear All Modify Search
Restricted access

Tobias Clausen, Oscar Luis Alves, Michael Reinert, Egon Doppenberg, Alois Zauner and Ross Bullock

Object. Glycerol is considered to be a marker of cell membrane degradation and thus cellular lysis. Recently, it has become feasible to measure via microdialysis cerebral extracellular fluid (ECF) glycerol concentrations at the patient's bedside. Therefore the aim of this study was to investigate the ECF concentration and time course of glycerol after severe traumatic brain injury (TBI) and its relationship to patient outcome and other monitoring parameters.

Methods. As soon as possible after injury for up to 4 days, 76 severely head-injured patients were monitored using a microdialysis probe (cerebral glycerol) and a Neurotrend sensor (brain tissue PO2) in uninjured brain tissue confirmed by computerized tomography scanning. The mean brain tissue glycerol concentration in all monitored patients decreased significantly from 206 ± 31 µmol/L on Day 1 to 9 ± 3 µmol/L on Day 4 after injury (p < 0.0001). Note, however, that there was no significant difference in the time course between patients with a favorable outcome (Glasgow Outcome Scale [GOS] Scores 4 and 5) and those with an unfavorable outcome (GOS Scores 1–3). Significantly increased glycerol concentrations were observed when brain tissue PO2 was less than 10 mm Hg or when cerebral perfusion pressure was less than 70 mm Hg.

Conclusions. Based on results in the present study one can infer that microdialysate glycerol is a marker of severe tissue damage, as seen immediately after brain injury or during profound tissue hypoxia. Given that brain tissue glycerol levels do not yet add new clinically significant information, however, routine monitoring of this parameter following traumatic brain injury needs further validation.

Restricted access

Alois Zauner, Tobias Clausen, Oscar L. Alves, Ann Rice, Joseph Levasseur, Harold F. Young and Ross Bullock

Object. Currently, there are no good clinical tools to identify the onset of secondary brain injury and/or hypoxia after traumatic brain injury (TBI). The aim of this study was to evaluate simultaneously early changes of cerebral metabolism, acid—base homeostasis, and oxygenation, as well as their interrelationship after TBI and arterial hypoxia.

Methods. Cerebral biochemistry and O2 supply were measured simultaneously in a feline model of fluid-percussion injury (FPI) and secondary hypoxic injury. After FPI, brain tissue PO2 decreased from 33 ± 5 mm Hg to 10 ± 4 mm Hg and brain tissue PCO2 increased from 55 ± 2 mm Hg to 81 ± 9 mm Hg, whereas cerebral pH fell from 7.1 ± 0.06 to 6.84 ± 0.14 (p < 0.05 for all three measures). After 40 minutes of hypoxia, brain tissue PO2 and pH decreased further to 0 mm Hg and 6.48 ± 0.28, respectively (p < 0.05), whereas brain tissue PCO2 remained high at 83 ± 13 mm Hg. Secondary hypoxic injury caused a drastic increase in cerebral lactate from 513 ± 69 µM/L to 3219 ± 490 µM/L (p < 0.05). The lactate/glucose ratio increased from 0.7 ± 0.1 to 9.1 ± 2 after hypoxia was introduced. The O2 consumption decreased significantly from 18.5 ± 1.1 µl/mg/hr to 13.2 ± 2.1 µl/mg/hr after hypoxia was induced.

Conclusions. Cerebral metabolism, O2 supply, and acid—base balance were severely compromised ultra-early after TBI, and they declined further if arterial hypoxia was present. The complexity of pathophysiological changes and their interactions after TBI might explain why specific therapeutic attempts that are aimed at the normalization of only one component have failed to improve outcome in severely head injured patients.

Restricted access

Tobias Clausen, Ahmad Khaldi, Alois Zauner, Michael Reinert, Egon Doppenberg, Matthias Menzel, Jens Soukup, Oscar Luis Alves and M. Ross Bullock

Object. Brain tissue acidosis is known to mediate neuronal death. Therefore the authors measured the main parameters of cerebral acid—base homeostasis, as well as their interrelations, shortly after severe traumatic brain injury (TBI) in humans.

Methods. Brain tissue pH, PCO2, PO2, and/or lactate were measured in 151 patients with severe head injuries, by using a Neurotrend sensor and/or a microdialysis probe. Monitoring was started as soon as possible after the injury and continued for up to 4 days.

During the 1st day following the trauma, the brain tissue pH was significantly lower, compared with later time points, in patients who died or remained in a persistent vegetative state. Six hours after the injury, brain tissue PCO2 was significantly higher in patients with a poor outcome compared with patients with a good outcome. Furthermore, significant elevations in cerebral concentrations of lactate were found during the 1st day after the injury, compared with later time points. These increases in lactate were typically more pronounced in patients with a poor outcome. Similar biochemical changes were observed during later hypoxic events.

Conclusions. Severe human TBI profoundly disturbs cerebral acid—base homeostasis. The observed pH changes persist for the first 24 hours after the trauma. Brain tissue acidosis is associated with increased tissue PCO2 and lactate concentration; these pathobiochemical changes are more severe in patients who remain in a persistent vegetative state or die. Furthermore, increased brain tissue PCO2 (> 60 mm Hg) appears to be a useful clinical indicator of critical cerebral ischemia, especially when accompanied by increased lactate concentrations.