Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Tizian Rosenstock x
  • Refine by Access: all x
Clear All Modify Search
Full access

Tizian Rosenstock, Ulrike Grittner, Güliz Acker, Vera Schwarzer, Nataliia Kulchytska, Peter Vajkoczy, and Thomas Picht

OBJECTIVE

Navigated transcranial magnetic stimulation (nTMS) is a noninvasive method for preoperatively localizing functional areas in patients with tumors in presumed motor eloquent areas. The aim of this study was to establish an nTMS-based risk stratification model by examining whether the results of nTMS mapping and its neurophysiological data predict postoperative motor outcome in glioma surgery.

METHODS

Included in this study were prospectively collected data for 113 patients undergoing bihemispheric nTMS examination prior to surgery for gliomas in presumed motor eloquent locations. Multiple ordinal logistic regression analysis was performed to test for any association between preoperative nTMS-related variables and postoperative motor outcome.

RESULTS

A new motor deficit or deterioration due to a preexisting deficit was observed in 20% of cases after 7 days and in 22% after 3 months. In terms of tumor location, no new permanent deficit was observed when the distance between tumor and corticospinal tract was greater than 8 mm and the precentral gyrus was not infiltrated (p = 0.014). New postoperative deficits on Day 7 were associated with a pathological excitability of the motor cortices (interhemispheric resting motor threshold [RMT] ratio < 90% or > 110%, p = 0.031). Interestingly, motor function never improved when the RMT was significantly higher in the tumorous hemisphere than in the healthy hemisphere (RMT ratio > 110%).

CONCLUSIONS

The proposed risk stratification model, based on objective functional-anatomical and neurophysiological measures, enables one to counsel patients about the risk of functional deterioration or the potential for recovery.

Open access

Luca L. Silva, Mehmet S. Tuncer, Peter Vajkoczy, Thomas Picht, and Tizian Rosenstock

OBJECTIVE

Visualization of subcortical language pathways by means of diffusion tensor imaging–fiber tracking (DTI-FT) is evolving as an important tool for surgical planning and decision making in patients with language-suspect brain tumors. Repetitive navigated transcranial magnetic stimulation (rTMS) cortical language mapping noninvasively provides additional functional information. Efforts to incorporate rTMS data into DTI-FT are promising, but the lack of established protocols makes it hard to assess clinical utility. The authors performed DTI-FT of important language pathways by using five distinct approaches in an effort to evaluate the respective clinical usefulness of each approach.

METHODS

Thirty patients with left-hemispheric perisylvian lesions underwent preoperative rTMS language mapping and DTI. FT of the principal language tracts was conducted according to different strategies: Ia, anatomical landmark based; Ib, lesion-focused landmark based; IIa, rTMS based; IIb, rTMS based with postprocessing; and III, rTMS enhanced (based on a combination of structural and functional data). The authors analyzed the respective success of each method in revealing streamlines and conducted a multinational survey with expert clinicians to evaluate aspects of clinical utility.

RESULTS

The authors observed high usefulness and accuracy ratings for anatomy-based approaches (Ia and Ib). Postprocessing of rTMS-based tractograms (IIb) led to more balanced perceived information content but did not improve the usefulness for surgical planning and risk assessment. Landmark-based tractography (Ia and Ib) was most successful in delineating major language tracts (98% success), whereas rTMS-based tractography (IIa and IIb) frequently failed to reveal streamlines and provided less complete tractograms than the landmark-based approach (p < 0.001). The lesion-focused landmark-based (Ib) and the rTMS-enhanced (III) approaches were the most preferred methods.

CONCLUSIONS

The lesion-focused landmark-based approach (Ib) achieved the best ratings and enabled visualization of the principal language tracts in almost all cases. The rTMS-enhanced approach (III) was positively evaluated by the experts because it can reveal cortico-subcortical connections, but the functional relevance of these connections is still unclear. The use of regions of interest derived solely from cortical rTMS mapping (IIa and IIb) leads to cluttered images that are of limited use in clinical practice.

Free access

Tizian Rosenstock, Thomas Picht, Heike Schneider, Peter Vajkoczy, and Ulrich-Wilhelm Thomale

OBJECTIVE

In adults, navigated transcranial magnetic stimulation (nTMS) has been established as a preoperative examination method for brain tumors in motor- and language-eloquent locations. However, the clinical relevance of nTMS in children with brain tumors is still unclear. Here, the authors present their initial experience with nTMS-based surgical planning and family counseling in pediatric cases.

METHODS

The authors analyzed the feasibility of nTMS and its influence on counseling and surgical strategy in a prospective study conducted between July 2017 and September 2019. The main inclusion criterion was a potential benefit from functional mapping data derived from nTMS and/or nTMS-enhanced tractography in pediatric patients who presented to the authors’ department prior to surgery for lesions close to motor- and/or speech-eloquent areas. The study was undertaken in 14 patients (median age 7 years, 8 males) who presented with different brain lesions.

RESULTS

Motor mapping combined with cortical seed area definition could be performed in 10 children (71%) to identify the corticospinal tract by additional diffusion tensor imaging (DTI). All motor mappings could be performed successfully without inducing relevant side effects. In 7 children, nTMS language mapping was performed to detect language-relevant cortical areas and DTI fiber tractography was performed to visualize the individual language network. nTMS examination was not possible in 4 children because of lack of compliance (n = 2), syncope (n = 1), and preexisting implant (n = 1). After successful mapping, the spatial relation between lesion and functional tissue was used for surgical planning in all 10 patients, and 9 children underwent nTMS-DTI integrated neuronavigation. No surgical complications or unexpected neurological deterioration was observed. In all successful nTMS cases, better function-based counseling was offered to the families. In 6 of 10 patients the surgical strategy was adapted according to nTMS data, and in 6 of 10 cases the extent of resection (EOR) was redefined.

CONCLUSIONS

nTMS and DTI fiber tracking were feasible for the majority of children. Presurgical counseling as well as surgical planning for the approach and EOR were improved by the nTMS examination results. nTMS in combination with DTI fiber tracking can be regarded as beneficial for neurosurgical procedures in eloquent areas in the pediatric population.

Free access

Gueliz Acker, Davide Giampiccolo, Kerstin Rubarth, Robert Mertens, Anna Zdunczyk, Juliane Hardt, Daniel Jussen, Heike Schneider, Tizian Rosenstock, Vera Mueller, Thomas Picht, and Peter Vajkoczy

OBJECTIVE

Motor cortical dysfunction has been shown to be reversible in patients with unilateral atherosclerotic disease after cerebral revascularization. Moyamoya vasculopathy (MMV) is a rare bilateral stenoocclusive cerebrovascular disease. The aim of this study was to analyze the corticospinal excitability and the role of bypass surgery in restoring cortical motor function in patients by using navigated transcranial magnetic stimulation (nTMS).

METHODS

Patients with bilateral MMV who met the criteria for cerebral revascularization were prospectively included. Corticospinal excitability, cortical representation area, and intracortical inhibition and facilitation were assessed by nTMS for a small hand muscle (first dorsal interosseous) before and after revascularization. The clinically and/or hemodynamically more severely affected hemisphere was operated first as the leading hemisphere. Intra- and interhemispheric differences were analyzed before and after direct or combined revascularization.

RESULTS

A total of 30 patients with bilateral MMV were examined by nTMS prior to and after revascularization surgery. The corticospinal excitability was higher in the leading hemisphere compared with the non-leading hemisphere prior to revascularization. This hyperexcitability was normalized after revascularization as demonstrated in the resting motor threshold ratio of the hemispheres (preoperative median 0.97 [IQR 0.89–1.08], postoperative median 1.02 [IQR 0.94–1.22]; relative effect = 0.61, p = 0.03). In paired-pulse paradigms, a tendency for a weaker inhibition of the leading hemisphere was observed compared with the non-leading hemisphere. Importantly, the paired paradigm also demonstrated approximation of excitability patterns between the two hemispheres after surgery.

CONCLUSIONS

The study results suggested that, in the case of a bilateral chronic ischemia, a compensation mechanism between both hemispheres seemed to exist that normalized after revascularization surgery. A potential role of nTMS in predicting the efficacy of revascularization must be further assessed.

Restricted access

Tizian Rosenstock, Levin Häni, Ulrike Grittner, Nicolas Schlinkmann, Meltem Ivren, Heike Schneider, Andreas Raabe, Peter Vajkoczy, Kathleen Seidel, and Thomas Picht

OBJECTIVE

The authors sought to validate the navigated transcranial magnetic stimulation (nTMS)–based risk stratification model. The postoperative motor outcome in glioma surgery may be preoperatively predicted based on data derived by nTMS. The tumor-to-tract distance (TTD) and the interhemispheric resting motor threshold (RMT) ratio (as a surrogate parameter for cortical excitability) emerged as major factors related to a new postoperative deficit.

METHODS

In this bicentric study, a consecutive prospectively collected cohort underwent nTMS mapping with diffusion tensor imaging (DTI) fiber tracking of the corticospinal tract prior to surgery of motor eloquent gliomas. The authors analyzed whether the following items were associated with the patient’s outcome: patient characteristics, TTD, RMT value, and diffusivity parameters (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]). The authors assessed the validity of the published risk stratification model and derived a new model.

RESULTS

A new postoperative motor deficit occurred in 36 of 165 patients (22%), of whom 20 patients still had a deficit after 3 months (13%; n3 months = 152). nTMS-verified infiltration of the motor cortex as well as a TTD ≤ 8 mm were confirmed as risk factors. No new postoperative motor deficit occurred in patients with TTD > 8 mm. In contrast to the previous risk stratification, the RMT ratio was not substantially correlated with the motor outcome, but high RMT values of both the tumorous and healthy hemisphere were associated with worse motor outcome. The FA value was negatively associated with worsening of motor outcome. Accuracy analysis of the final model showed a high negative predictive value (NPV), so the preoperative application may accurately predict the preservation of motor function in particular (day of discharge: sensitivity 47.2%, specificity 90.7%, positive predictive value [PPV] 58.6%, NPV 86.0%; 3 months: sensitivity 85.0%, specificity 78.8%, PPV 37.8%, NPV 97.2%).

CONCLUSIONS

This bicentric validation analysis further improved the model by adding the FA value of the corticospinal tract, demonstrating the relevance of nTMS/nTMS-based DTI fiber tracking for clinical decision making.