Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ting Fan x
Clear All Modify Search
Restricted access

Xueyan Wan, Chao Gan, Chao You, Ting Fan, Suojun Zhang, Huaqiu Zhang, Sheng Wang, Kai Shu, Xiong Wang and Ting Lei

OBJECTIVE

The intracranial hematoma volume in patients with traumatic brain injury is a key parameter for the determination of the management approach and outcome. Apolipoprotein E (APOE) ε4 is reported to be a risk factor for larger hematoma volume, which might contribute to a poor outcome. However, whether APOE ε4 is related to progressive hemorrhagic injury (PHI), a common occurrence in the clinical setting, remains unclear. In this study, the authors aimed to investigate the association between the APOE genotype and occurrence of PHI.

METHODS

This prospective study included a cohort of 123 patients with traumatic intracerebral hemorrhage who initially underwent conservative treatment. These patients were assigned to the PHI or non-PHI group according to the follow-up CT scan. A polymerase chain reaction and sequencing method were carried out to determine the APOE genotype. Multivariate logistic regression analysis was applied to identify predictors of PHI.

RESULTS

The overall frequency of the alleles was as follows: E2/2, 0%; E2/3, 14.6%; E3/3, 57.8%; E2/4, 2.4%; E3/4, 22.8%; and E4/4, 2.4%. Thirty-four patients carried at least one allele of ε4. In this study 60 patients (48.8%) experienced PHI, and the distribution of the alleles was as follows: E2/2, 0%; E2/3, 5.7%; E3/3, 22.8%; E2/4, 2.4%; E3/4, 16.3%; and E4/4, 1.6%, which was significantly different from that in the non-PHI group (p = 0.008). Additionally, the late operation rate in the PHI group was significantly higher than that in the non-PHI group (24.4% vs 11.4%, p = 0.002). Multivariate logistic regression identified APOE ε4 (OR 5.14, 95% CI 2.40–11.62), an elevated international normalized ratio (OR 3.57, 95% CI 1.61–8.26), and higher glucose level (≥ 10 mmol/L) (OR 3.88, 95% CI 1.54–10.77) as independent risk factors for PHI. Moreover, APOE ε4 was not a risk factor for the coagulopathy and outcome of the patients with traumatic intracerebral hemorrhage.

CONCLUSIONS

The presence of APOE ε4, an elevated international normalized ratio, and a higher glucose level (≥ 10 mmol/L) are predictors of PHI. Additionally, APOE ε4 is not associated with traumatic coagulopathy and patient outcome.

Restricted access

Xin Zhang, Tamrakar Karuna, Zhi-Qiang Yao, Chuan-Zhi Duan, Xue-Min Wang, Shun-Ting Jiang, Xi-Feng Li, Jia-He Yin, Xu-Ying He, Shen-Quan Guo, Yun-Chang Chen, Wen-Chao Liu, Ran Li and Hai-Yan Fan

OBJECTIVE

Among clinical and morphological criteria, hemodynamics is the main predictor of aneurysm growth and rupture. This study aimed to identify which hemodynamic parameter in the parent artery could independently predict the rupture of anterior communicating artery (ACoA) aneurysms by using multivariate logistic regression and two-piecewise linear regression models. An additional objective was to look for a more simplified and convenient alternative to the widely used computational fluid dynamics (CFD) techniques to detect wall shear stress (WSS) as a screening tool for predicting the risk of aneurysm rupture during the follow-up of patients who did not undergo embolization or surgery.

METHODS

One hundred sixty-two patients harboring ACoA aneurysms (130 ruptured and 32 unruptured) confirmed by 3D digital subtraction angiography at three centers were selected for this study. Morphological and hemodynamic parameters were evaluated for significance with respect to aneurysm rupture. Local hemodynamic parameters were obtained by MR angiography and transcranial color-coded duplex sonography to calculate WSS magnitude. Multivariate logistic regression and a two-piecewise linear regression analysis were performed to identify which hemodynamic parameter independently characterizes the rupture status of ACoA aneurysms.

RESULTS

Univariate analysis showed that WSS (p < 0.001), circumferential wall tension (p = 0.005), age (p < 0.001), the angle between the A1 and A2 segments of the anterior cerebral artery (p < 0.001), size ratio (p = 0.023), aneurysm angle (p < 0.001), irregular shape (p = 0.005), and hypertension (grade II) (p = 0.006) were significant parameters. Multivariate analyses showed significant association between WSS in the parent artery and ACoA aneurysm rupture (p = 0.0001). WSS magnitude, evaluated by a two-piecewise linear regression model, was significantly correlated with the rupture of the ACoA aneurysm when the magnitude was higher than 12.3 dyne/cm2 (HR 7.2, 95% CI 1.5–33.6, p = 0.013).

CONCLUSIONS

WSS in the parent artery may be one of the reliable hemodynamic parameters characterizing the rupture status of ACoA aneurysms when the WSS magnitude is higher than 12.3 dyne/cm2. Analysis showed that with each additional unit of WSS (even with a 1-unit increase of WSS), there was a 6.2-fold increase in the risk of rupture for ACoA aneurysms.