Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Thomas W. McAllister x
Clear All Modify Search
Free access

Ann-Christine Duhaime, Jonathan G. Beckwith, Arthur C. Maerlender, Thomas W. McAllister, Joseph J. Crisco, Stefan M. Duma, P. Gunnar Brolinson, Steven Rowson, Laura A. Flashman, Jeffrey J. Chu and Richard M. Greenwald

Object

Concussive head injuries have received much attention in the medical and public arenas, as concerns have been raised about the potential short- and long-term consequences of injuries sustained in sports and other activities. While many student athletes have required evaluation after concussion, the exact definition of concussion has varied among disciplines and over time. The authors used data gathered as part of a multiinstitutional longitudinal study of the biomechanics of head impacts in helmeted collegiate athletes to characterize what signs, symptoms, and clinical histories were used to designate players as having sustained concussions.

Methods

Players on 3 college football teams and 4 ice hockey teams (male and female) wore helmets instrumented with Head Impact Telemetry (HIT) technology during practices and games over 2–4 seasons of play. Preseason clinical screening batteries assessed baseline cognition and reported symptoms. If a concussion was diagnosed by the team medical staff, basic descriptive information was collected at presentation, and concussed players were reevaluated serially. The specific symptoms or findings associated with the diagnosis of acute concussion, relation to specific impact events, timing of symptom onset and diagnosis, and recorded biomechanical parameters were analyzed.

Results

Data were collected from 450 athletes with 486,594 recorded head impacts. Forty-eight separate concussions were diagnosed in 44 individual players. Mental clouding, headache, and dizziness were the most common presenting symptoms. Thirty-one diagnosed cases were associated with an identified impact event; in 17 cases no specific impact event was identified. Onset of symptoms was immediate in 24 players, delayed in 11, and unspecified in 13. In 8 cases the diagnosis was made immediately after a head impact, but in most cases the diagnosis was delayed (median 17 hours). One diagnosed concussion involved a 30-second loss of consciousness; all other players retained alertness. Most diagnoses were based on self-reported symptoms. The mean peak angular and rotational acceleration values for those cases associated with a specific identified impact were 86.1 ± 42.6g (range 16.5–177.9g) and 3620 ± 2166 rad/sec2 (range 183–7589 rad/sec2), respectively.

Conclusions

Approximately two-thirds of diagnosed concussions were associated with a specific contact event. Half of all players diagnosed with concussions had delayed or unclear timing of onset of symptoms. Most had no externally observed findings. Diagnosis was usually based on a range of self-reported symptoms after a variable delay. Accelerations clustered in the higher percentiles for all impact events, but encompassed a wide range. These data highlight the heterogeneity of criteria for concussion diagnosis, and in this sports context, its heavy reliance on self-reported symptoms. More specific and standardized definitions of clinical and objective correlates of a “concussion spectrum” may be needed in future research efforts, as well as in the clinical diagnostic arena.

Free access

Don Comrie and Sean J. Morey

Free access

Steven Rowson, Stefan M. Duma, Richard M. Greenwald, Jonathan G. Beckwith, Jeffrey J. Chu, Kevin M. Guskiewicz, Jason P. Mihalik, Joseph J. Crisco, Bethany J. Wilcox, Thomas W. McAllister, Arthur C. Maerlender, Steven P. Broglio, Brock Schnebel, Scott Anderson and P. Gunnar Brolinson

Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%–75.8%). When controlling for each player's exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ2 = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury.