Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Thomas Shawker x
Clear All Modify Search
Restricted access

Edward H. Oldfield, Karin Muraszko, Thomas H. Shawker and Nicholas J. Patronas

✓ The mechanisms previously proposed for the progression of syringomyelia associated with Chiari I malformation of the cerebellar tonsils are controversial, leave many clinical observations unexplained, and underlie the prevalence of different operations currently used as initial treatment. To explore the mechanism of syringomyelia progression in this setting, the authors used anatomical and dynamic (phase-contrast and phase-contrast cine) magnetic resonance (MR) imaging, and intraoperative ultrasonography to examine the anatomy and dynamics of movement of the cerebellar tonsils, the wall of the spinal cord surrounding the syrinx, and the movement of cerebrospinal fluid (CSF) and syrinx fluid at rest, during the respiratory and cardiac cycles, and during Valsalva maneuver in seven affected patients.

In all patients the cerebellar tonsils occluded the subarachnoid space at the level of the foramen magnum. Syringomyelia extended from the cervical to the lower thoracic segment of the spinal cord. No patient had evidence of a patent communication between the fourth ventricle and the syrinx on anatomical MR images, dynamic MR images, or intraoperative ultrasound studies. Dynamic MR images of three patients revealed abrupt downward movement of the spinal CSF and the syrinx fluid during systole and upward movement during diastole, but limited movement of CSF across the foramen magnum during the cardiac cycle. Intraoperative ultrasound studies demonstrated abrupt downward movement of the cerebellar tonsils during systole that was synchronous with sudden constriction of the spinal cord and syrinx. Decompression of the foramen magnum was achieved via suboccipital craniectomy, laminectomy of C-1 and C-2, and dural grafting, leaving the arachnoid intact. Immediately after surgery, the pulsatile downward thrust of the tonsils and constriction of the spinal cord and syrinx disappeared. Syringomyelia resolved within 1 to 6 months after surgery in all patients.

Observations by the authors suggest the following previously unrecognized mechanism for progression of syringomyelia associated with occlusion of the subarachnoid space at the foramen magnum. The brain expands as it fills with blood during systole, imparting a systolic pressure wave to the intracranial CSF that is accommodated in normal subjects by sudden movement of CSF from the basal cisterns to the upper portion of the spinal canal. With obstruction to rapid movement of CSF at the foramen magnum, the cerebellar tonsils, which plug the subarachnoid space posteriorly, move downward with each systolic pulse, acting as a piston on the partially isolated spinal CSF and producing a systolic pressure wave in the spinal CSF that acts on the surface of the spinal cord. This causes progression of syringomyelia by abruptly compressing the cord and propelling the fluid in the syrinx longitudinally with each pulse, and may be responsible for the origin and maintenance of syringomyelia by the pulsatile pressure waves forcing CSF into the cord through the perivascular and interstitial spaces. Effective treatment occurs when the systolic pressure wave transmitted by the cerebellar tonsils is eliminated by relieving the obstruction to rapid movement of subarachnoid CSF across the foramen magnum. The presence of this mechanism can be detected preoperatively on dynamic MR images and during surgery on ultrasound studies by the pulsatile excursion of the wall of the spinal cord surrounding the syrinx and by its immediate disappearance and the expansion of the syrinx during forced inspiration after decompression of the tonsils. Effective treatment is achieved with bone and dural decompression of the foramen magnum alone, without entering the arachnoid.

Restricted access

Zvi Ram, Stuart Walbridge, Thomas Shawker, Kenneth W. Culver, R. Michael Blaese and Edward H. Oldfield

✓ Eradication of malignant brain tumors by in situ intratumoral, retrovirally mediated transfer of the herpes simplex virus thymidine kinase (HSVtk) gene, which sensitizes the tumor cells to ganciclovir, has recently been demonstrated in animal models. The observation that tumors studied in vitro and in animals can be completely eliminated despite only partial transduction of the tumor suggests a bystander mechanism that affects nontransduced tumor cells. Such a bystander effect is not completely understood and may represent a combination of several factors that lead to tumor eradication. Endothelial cells of the tumor blood vessels were shown to occasionally integrate the retroviral vector and thus become sensitized to ganciclovir. In the presence of vector-producer cells, which continuously release infectious viral particles, diffuse multifocal hemorrhages occurred during ganciclovir administration. When the tumor was composed of cells that had been transduced with the thymidine kinase gene before inoculation, no infectious viral particles were present within the tumor, no transduction of endothelial cells occurred, and no hemorrhages were observed during ganciclovir therapy. These observations suggest that tumor regression may be due, in part, to destruction of in vivo HSVtk-transduced endothelial cells after exposure to ganciclovir, resulting in tumor ischemia as one possible bystander mechanism.

The authors investigated this hypothesis using the subcutaneous 9L gliosarcoma tumor model in Fischer rats. The tumors were evaluated with Doppler color-flow and ultrasound imaging during the various phases of the study. Twenty rats received intratumoral injections of HSVtk retroviral vector-producer cells (6 × 107 cells/ml) 21 days after bilateral flank tumor inoculation. Ten rats were subsequently treated with intraperitoneal ganciclovir (15 mg/kg/ml twice a day) for 14 days starting on Day 7 after producer cell injection; 10 control rats received intraperitoneal saline injections (1 ml twice a day) instead of ganciclovir. Ultrasound and flow images were obtained before cell injection, before and during ganciclovir or saline administration, and after cessation of treatment. The number, location, and ultrasonographic appearance of tumor vessels and the tumor volumes were recorded.

The number of blood vessels in the tumors increased over time in both groups before treatment. Intratumoral cell injection without ganciclovir administration did not influence tumor growth or intratumoral vasculature. However, tumor vasculature decreased after initiation of ganciclovir therapy in the HSVtk-transduced tumors (p < 0.05). Early patchy or diffuse necrotic changes associated with ultrasonographic evidence of scattered intratumoral hemorrhage occurred in tumors treated with ganciclovir. Reduction of the tumor blood supply may be an important feature of HSVtk transduction-mediated tumor regression and may, at least partially, account for the degree of tumor destruction that occurs despite the lack of transduction of all tumor cells.

Restricted access

Zvi Ram, Thomas H. Shawker, Mary H. Bradford, John L. Doppman and Edward H. Oldfield

✓ Microadenomas of the pituitary vary in size, particularly those related to Cushing's disease. They are often not visualized on preoperative magnetic resonance (MR) imaging and may be difficult to find during surgical exploration of the pituitary. To enhance intraoperative localization of pituitary adenomas, we assessed the feasibility of using ultrasound to detect and localize pituitary tumors. Intraoperative ultrasound (IS) in the axial and sagittal planes was performed with an Intrascan system using a 12-MHz mechanically oscillating, end-firing transducer. Interpretation of the scans was performed by two individuals, who were usually blinded to the results of preoperative MR imaging or petrosal sinus sampling.

Twenty-eight patients were examined. Eighteen of these patients had microadenomas (1.5–7 mm), all with Cushing's disease; nine had macroadenomas (10–20 mm), three of which were adrenocorticotropic hormone—secreting, three growth hormone—secreting, two thyroid-stimulating hormone—secreting, and one nonfunctioning; and one patient had an intrasellar craniopharyngioma. Normal sellar and parasellar structures, such as intrapituitary cysts, the intracavernous carotid arteries, and the diaphragma sella were easily visualized. Twenty-three of the 28 tumors, including 13 of the 18 microadenomas, were detected on IS (82% sensitivity). Tumors were seen as hyperechoic masses in 19 patients, mixed echogenicity in three, and isoechoic in one. In most macroadenomas IS allowed visualization of the interface between the tumor and the normal pituitary gland. These results indicate the potential of IS to aid the intraoperative localization and definition of pituitary tumors.

Restricted access

Joe C. Watson, Thomas H. Shawker, Lynnette K. Nieman, Hetty L. DeVroom, John L. Doppman and Edward H. Oldfield

Object. Pituitary surgery has been reported to produce remission of Cushing's disease with preservation of pituitary function in only 60 to 70% of patients. The inability to identify an adenoma accounts for most failed sellar explorations. Most negative surgical explorations occur in patients in whom magnetic resonance (MR) imaging of the pituitary demonstrates normal findings, which happens in at least 35 to 45% of patients with Cushing's disease.

Methods. To examine the usefulness of intraoperative ultrasonography (IOUS) for identifying an adenoma in patients with no demonstrable tumor (negative findings) on pituitary MR imaging, we prospectively assessed the results of IOUS in 68 patients with a negative (59 patients) or equivocal (nine patients) MR image from a consecutive series of 107 patients with Cushing's disease (64%). We compared surgical findings and outcomes in these 68 patients with a group of 68 patients with Cushing's disease and negative findings on MR imaging in whom IOUS was not available.

Intraoperative ultrasonography localized a tumor in 47 (69%) of 68 patients with negative findings on MR imaging. Surprisingly, the size of the adenomas that were detected with IOUS compared with the size of those not detected did not differ (6.8 ± 3.4 mm compared with 6.1 ± 2.8 mm [mean ± standard deviation], respectively [p = 0.5]). In four patients, no adenoma was found at surgery or in the pathological specimen (“true negative”). In eight patients, nine abnormalities detected by IOUS that were suspected adenomas were negative on exploration (“false positive”). Thus, IOUS has a sensitivity of 73% and a positive predictive value of 84% for detecting pituitary adenomas in patients with Cushing's disease and negative findings on MR imaging. Compared with the 68 patients who did not undergo IOUS, remission after surgery was improved (61 patients [90%] compared with 57 patients [84%]), the number of tumors found on exploration was increased (61 tumors compared with 51 tumors; p = 0.02), and the number of hemihypophysectomies was decreased (five compared with 15; p = 0.02) with IOUS. When the groups were compared after excluding patients with prior pituitary surgery, tumors were found in 91% versus 72% (p = 0.008), and remission occurred in 95% versus 87% of patients, respectively, in the groups that had or did not have IOUS.

Conclusions. The IOUS is a sensitive imaging modality when used in patients with Cushing's disease in whom findings on pituitary MR imaging are negative. The improved ability to detect and localize these tumors by using IOUS positively affects surgical outcome.

Restricted access

John D. Heiss, Nicholas Patronas, Hetty L. DeVroom, Thomas Shawker, Robert Ennis, William Kammerer, Alec Eidsath, Thomas Talbot, Jonathan Morris, Eric Eskioglu and Edward H. Oldfield

Object. Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy.

Methods. The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing.

Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressure and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape.

Conclusions. The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-1 laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.

Full access

John D. Heiss, Nicholas Patronas, Hetty L. DeVroom, Thomas Shawker, Robert Ennis, William Kammerer, Alec Eidsath, Thomas Talbot, Jonathan Morris, Eric Eskioglu and Edward H. Oldfield

Object

Syringomyelia causes progressive myelopathy. Most patients with syringomyelia have a Chiari I malformation of the cerebellar tonsils. Determination of the pathophysiological mechanisms underlying the progression of syringomyelia associated with the Chiari I malformation should improve strategies to halt progression of myelopathy.

Methods

The authors prospectively studied 20 adult patients with both Chiari I malformation and symptomatic syringomyelia. Testing before surgery included the following: clinical examination; evaluation of anatomy by using T1-weighted magnetic resonance (MR) imaging; evaluation of the syrinx and cerebrospinal fluid (CSF) velocity and flow by using phase-contrast cine MR imaging; and evaluation of lumbar and cervical subarachnoid pressure at rest, during the Valsalva maneuver, during jugular compression, and following removal of CSF (CSF compliance measurement). During surgery, cardiac-gated ultrasonography and pressure measurements were obtained from the intracranial, cervical subarachnoid, and lumbar intrathecal spaces and syrinx. Six months after surgery, clinical examinations, MR imaging studies, and CSF pressure recordings were repeated. Clinical examinations and MR imaging studies were repeated annually. For comparison, 18 healthy volunteers underwent T1-weighted MR imaging, cine MR imaging, and cervical and lumbar subarachnoid pressure testing.

Compared with healthy volunteers, before surgery, the patients had decreased anteroposterior diameters of the ventral and dorsal CSF spaces at the foramen magnum. In patients, CSF velocity at the foramen magnum was increased, but CSF flow was reduced. Transmission of intracranial pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was partially obstructed. Spinal CSF compliance was reduced, whereas cervical subarachnoid pressure and pulse pressure were increased. Syrinx fluid flowed inferiorly during systole and superiorly during diastole on cine MR imaging. At surgery, the cerebellar tonsils abruptly descended during systole and ascended during diastole, and the upper pole of the syrinx contracted in a manner synchronous with tonsillar descent and with the peak systolic cervical subarachnoid pressure wave. Following surgery, the diameter of the CSF passages at the foramen magnum increased compared with preoperative values, and the maximum flow rate of CSF across the foramen magnum during systole increased. Transmission of pressure across the foramen magnum to the spinal subarachnoid space in response to jugular compression was normal and cervical subarachnoid mean pressuree and pulse pressure decreased to normal. The maximum syrinx diameter decreased on MR imaging in all patients. Cine MR imaging documented reduced velocity and flow of the syrinx fluid. Clinical symptoms and signs improved or remained stable in all patients, and the tonsils resumed a normal shape.

Conclusions

The progression of syringomyelia associated with Chiari I malformation is produced by the action of the cerebellar tonsils, which partially occlude the subarachnoid space at the foramen magnum and act as a piston on the partially enclosed spinal subarachnoid space. This creates enlarged cervical subarachnoid pressure waves that compress the spinal cord from without, not from within, and propagate syrinx fluid caudally with each heartbeat, which leads to syrinx progression. The disappearance of the abnormal shape and position of the tonsils after simple decompressive extraarachnoidal surgery suggests that the Chiari I malformation of the cerebellar tonsils is acquired, not congenital. Surgery limited to suboccipital craniectomy, C-1 laminectomy, and duraplasty eliminates this mechanism and eliminates syringomyelia and its progression without the risk of more invasive procedures.