Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Thomas J. Buell x
Clear All Modify Search
Restricted access

Thomas J. Buell, Davis G. Taylor, Ching-Jen Chen and Bhiken I. Naik

Restricted access

Thomas J. Buell, Daniel M. S. Raper, I. Jonathan Pomeraniec, Dale Ding, Ching-Jen Chen, Davis G. Taylor and Kenneth C. Liu

Stenosis of the transverse sinus (TS) and sigmoid sinus (SS), with a trans-stenosis pressure gradient, has been implicated in the pathophysiology of idiopathic intracranial hypertension (IIH). MRI has shown improvement in TS and SS stenosis after high-volume lumbar puncture (HVLP) in a subset of patients with IIH. The authors present the first report of an IIH patient with immediate post-HVLP TS and SS trans-stenosis pressure gradient reduction and an attendant increase in TS and SS cross-sectional area confirmed using intravascular ultrasonography (IVUS). Recurrence of the patient’s TS-SS stenosis coincided with elevated HVLP opening pressure, and venous sinus stent placement resulted in clinical improvement. This report suggests that TS and SS stenosis may be a downstream effect of elevated intracranial pressure in IIH, rather than its principal etiological mechanism. However, the authors hypothesize that endovascular stenting may obliterate a positive feedback loop involving trans-stenosis pressure gradients, and still benefit appropriately selected patients.

Restricted access

Thomas J. Buell, Davis G. Taylor, Ching-Jen Chen, Christopher I. Shaffrey, Justin S. Smith and Shay Bess

Free access

Adeel Ilyas, Ching-Jen Chen, Dale Ding, Andrew Romeo, Thomas J. Buell, Tony R. Wang, M. Yashar S. Kalani and Min S. Park

Stroke is one of the leading causes of death worldwide and a significant source of long-term morbidity. Unfortunately, a substantial number of stroke patients either are ineligible or do not significantly benefit from contemporary medical and interventional therapies. To address this void, investigators recently made technological advances to render transcranial MR-guided, high-intensity focused ultrasound (MRg-HIFU) sonolysis a potential therapeutic option for both acute ischemic stroke (AIS)—as an alternative for patients with emergent large-vessel occlusion (ELVO) who are ineligible for endovascular mechanical thrombectomy (EMT) or as salvage therapy for patients in whom EMT fails—and intracerebral hemorrhage (ICH)—as a neoadjuvant means of clot lysis prior to surgical evacuation. Herein, the authors review the technological principles behind MRg-HIFU sonolysis, its results in in vitro and in vivo stroke models, and its potential clinical applications. As a noninvasive transcranial technique that affords rapid clot lysis, MRg-HIFU thrombolysis may develop into a therapeutic option for patients with AIS or ICH. However, additional studies of transcranial MRg-HIFU are necessary to ascertain the merit of this treatment approach for thrombolysis in both AIS and ICH, as well as its technical limitations and risks.

Restricted access

Davis G. Taylor, Ching-Jen Chen, Thomas J. Buell, Min S. Park, J. Javier Provencio and M. Yashar S. Kalani

Restricted access

Thomas J. Buell, Shay Bess, Ming Xu, Frank J. Schwab, Virginie Lafage, Christopher P. Ames, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Proximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs.

METHODS

Using a validated finite element model of a T7–L5 spine segment, testing was performed on intact spine, a multilevel posterior screw-rod construct (PS construct; T11–L5) without tether, and 15 PS constructs with different tether configurations that varied according to 1) proximal tether fixation of upper instrumented vertebra +1 (UIV+1) and/or UIV+2; 2) distal tether fixation to UIV, to UIV−1, or to rods; and 3) use of a loop (single proximal fixation) or weave (UIV and/or UIV+1 fixation in addition to UIV+1 and/or UIV+2 proximal attachment) of the tether. Segmental ROM, intradiscal pressure (IDP), inter- and supraspinous ligament (ISL/SSL) forces, and screw loads were assessed under variable tether preload.

RESULTS

PS construct junctional ROM increased abruptly from 10% (T11–12) to 99% (T10–11) of baseline. After tethers were grouped by most cranial proximal fixation (UIV+1 vs UIV+2) and use of loop versus weave, UIV+2 Loop and/or Weave most effectively dampened junctional ROM and adjacent-segment stress. Different distal fixation and use of loop versus weave had minimal effect. The mean segmental ROM at T11–12, T10–11, and T9–10, respectively, was 6%, 40%, and 99% for UIV+1 Loop; 6%, 44%, and 99% for UIV+1 Weave; 5%, 23%, and 26% for UIV+2 Loop; and 5%, 24%, and 31% for UIV+2 Weave.

Tethers shared loads with posterior ligaments; consequently, increasing tether preload tension reduced ISL/SSL forces, but screw loads increased. Further attenuation of junctional ROM and IDP reversed above approximately 100 N tether preload, suggesting diminished benefit for biomechanical PJK prophylaxis at higher preload tensioning.

CONCLUSIONS

In this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.

Restricted access

Davis G. Taylor, Thomas J. Buell, Tony R. Wang, Matthew J. Shepard, Dominic Maggio, Ching-Jen Chen, Min S. Park and Mark E. Shaffrey

Restricted access

Thomas J. Buell, James H. Nguyen, Marcus D. Mazur, Jeffrey P. Mullin, Juanita Garces, Davis G. Taylor, Chun-Po Yen, Mark E. Shaffrey, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Fixed sagittal spinal malalignment is a common problem in adult spinal deformity (ASD). Various three-column osteotomy techniques, including the extended pedicle subtraction osteotomy (ePSO), may correct global and regional malalignment in this patient population. In contrast to the number of reports on traditional PSO (Schwab grade 3 osteotomy), there is limited literature on the outcomes of ePSO (Schwab grade 4 osteotomy) in ASD surgery. The objective of this retrospective study was to provide focused investigation of radiographic outcomes and complications of single-level lumbar ePSO for ASD patients with fixed sagittal malalignment.

METHODS

Consecutive ASD patients in whom sagittal malalignment had been treated with single-level lumbar ePSO at the authors’ institution between 2010 and 2015 were analyzed, and those with a minimum 2-year follow-up were included in the study. Radiographic analyses included assessments of segmental lordosis through the ePSO site (sagittal Cobb angle measured from the superior endplate of the vertebra above and inferior endplate of the vertebra below the ePSO), lumbar lordosis (LL), pelvic tilt (PT), pelvic incidence and LL mismatch, thoracic kyphosis (TK), and sagittal vertical axis (SVA) on standing long-cassette radiographs. Complications were analyzed for the entire group.

RESULTS

Among 71 potentially eligible patients, 55 (77%) had a minimum 2-year follow-up and were included in the study. Overall, the average postoperative increases in ePSO segmental lordosis and overall LL were 41° ± 14° (range 7°–69°, p < 0.001) and 38° ± 11° (range 9°–58°, p < 0.001), respectively. The average SVA improvement was 13 ± 7 cm (range of correction: −33.6 to 3.4 cm, p < 0.001). These measurements were maintained when comparing early postoperative to last follow-up values, respectively (mean follow-up 52 months, range 26–97 months): ePSO segmental lordosis, 34° vs 33°, p = 0.270; LL, 47.3° vs 46.7°, p = 0.339; and SVA, 4 vs 5 cm, p = 0.330. Rod fracture (RF) at the ePSO site occurred in 18.2% (10/55) of patients, and pseudarthrosis (PA) at the ePSO site was confirmed by CT imaging or during rod revision surgery in 14.5% (8/55) of patients. Accessory supplemental rods across the ePSO site, a more recently employed technique, significantly reduced the occurrence of RF or PA on univariate (p = 0.004) and multivariable (OR 0.062, 95% CI 0.007–0.553, p = 0.013) analyses; this effect approached statistical significance on Kaplan-Meier analysis (p = 0.053, log-rank test). Interbody cage placement at the ePSO site resulted in greater ePSO segmental lordosis correction (45° vs 35°, p = 0.007) without significant change in RF or PA (p = 0.304). Transient and persistent motor deficits occurred in 14.5% (8/55) and 1.8% (1/55) of patients, respectively.

CONCLUSIONS

Extended PSO is an effective technique to correct fixed sagittal malalignment for ASD. In comparison to traditional PSO techniques, ePSO may allow greater focal correction with comparable complication rates, especially with interbody cage placement at the ePSO site and the use of accessory supplemental rods.

Restricted access

James H. Nguyen, Thomas J. Buell, Tony R. Wang, Jeffrey P. Mullin, Marcus D. Mazur, Juanita Garces, Davis G. Taylor, Chun-Po Yen, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Recent literature describing complications associated with spinopelvic fixation with iliac screws in adult patients has been limited but has suggested high complication rates. The authors’ objective was to report their experience with iliac screw fixation in a large series of patients with a 2-year minimum follow-up.

METHODS

Of 327 adult patients undergoing spinopelvic fixation with iliac screws at the authors’ institution between 2010 and 2015, 260 met the study inclusion criteria (age ≥ 18 years, first-time iliac screw placement, and 2-year minimum follow-up). Patients with active spinal infection were excluded. All iliac screws were placed via a posterior midline approach using fluoroscopic guidance. Iliac screw heads were deeply recessed into the posterior superior iliac spine. Clinical and radiographic data were obtained and analyzed.

RESULTS

Twenty patients (7.7%) had iliac screw–related complication, which included fracture (12, 4.6%) and/or screw loosening (9, 3.5%). No patients had iliac screw head prominence that required revision surgery or resulted in pain, wound dehiscence, or poor cosmesis. Eleven patients (4.2%) had rod or connector fracture below S1. Overall, 23 patients (8.8%) had L5–S1 pseudarthrosis. Four patients (1.5%) had fracture of the S1 screw. Seven patients (2.7%) had wound dehiscence (unrelated to the iliac screw head) or infection. The rate of reoperation (excluding proximal junctional kyphosis) was 17.7%. On univariate analysis, an iliac screw–related complication rate was significantly associated with revision fusion (70.0% vs 41.2%, p = 0.013), a greater number of instrumented vertebrae (mean 12.6 vs 10.3, p = 0.014), and greater postoperative pelvic tilt (mean 27.7° vs 23.2°, p = 0.04). Lumbosacral junction–related complications were associated with a greater mean number of instrumented vertebrae (12.6 vs 10.3, p = 0.014). Reoperation was associated with a younger mean age at surgery (61.8 vs 65.8 years, p = 0.014), a greater mean number of instrumented vertebrae (12.2 vs 10.2, p = 0.001), and longer clinical and radiological mean follow-up duration (55.8 vs 44.5 months, p < 0.001; 55.8 vs 44.6 months, p < 0.001, respectively). On multivariate analysis, reoperation was associated with longer clinical follow-up (p < 0.001).

CONCLUSIONS

Previous studies on iliac screw fixation have reported very high rates of complications and reoperation (as high as 53.6%). In this large, single-center series of adult patients, iliac screws were an effective method of spinopelvic fixation that had high rates of lumbosacral fusion and far lower complication rates than previously reported. Collectively, these findings argue that iliac screw fixation should remain a favored technique for spinopelvic fixation.