Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Thanda Meehan x
Clear All Modify Search
Restricted access

Andrew T. Hale, P. David Adelson, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Richard C. E. Anderson, David F. Bauer, Christopher M. Bonfield, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, James M. Johnston, Robert F. Keating, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, J. Gordon McComb, Thanda Meehan, Arnold H. Menezes, Brent O’Neill, Greg Olavarria, Tae Sung Park, John Ragheb, Nathan R. Selden, Manish N. Shah, Matthew D. Smyth, Scellig S. D. Stone, Jennifer M. Strahle, Scott D. Wait, John C. Wellons, William E. Whitehead, Chevis N. Shannon, David D. Limbrick Jr. and for the Park-Reeves Syringomyelia Research Consortium Investigators

OBJECTIVE

Factors associated with syrinx size in pediatric patients undergoing posterior fossa decompression (PFD) or PFD with duraplasty (PFDD) for Chiari malformation type I (CM-I) with syringomyelia (SM; CM-I+SM) are not well established.

METHODS

Using the Park-Reeves Syringomyelia Research Consortium registry, the authors analyzed variables associated with syrinx radiological outcomes in patients (< 20 years old at the time of surgery) with CM-I+SM undergoing PFD or PFDD. Syrinx resolution was defined as an anteroposterior (AP) diameter of ≤ 2 mm or ≤ 3 mm or a reduction in AP diameter of ≥ 50%. Syrinx regression or progression was defined using 1) change in syrinx AP diameter (≥ 1 mm), or 2) change in syrinx length (craniocaudal, ≥ 1 vertebral level). Syrinx stability was defined as a < 1-mm change in syrinx AP diameter and no change in syrinx length.

RESULTS

The authors identified 380 patients with CM-I+SM who underwent PFD or PFDD. Cox proportional hazards modeling revealed younger age at surgery and PFDD as being independently associated with syrinx resolution, defined as a ≤ 2-mm or ≤ 3-mm AP diameter or ≥ 50% reduction in AP diameter. Radiological syrinx resolution was associated with improvement in headache (p < 0.005) and neck pain (p < 0.011) after PFD or PFDD. Next, PFDD (p = 0.005), scoliosis (p = 0.007), and syrinx location across multiple spinal segments (p = 0.001) were associated with syrinx diameter regression, whereas increased preoperative frontal-occipital horn ratio (FOHR; p = 0.007) and syrinx location spanning multiple spinal segments (p = 0.04) were associated with syrinx length regression. Scoliosis (HR 0.38 [95% CI 0.16–0.91], p = 0.03) and smaller syrinx diameter (5.82 ± 3.38 vs 7.86 ± 3.05 mm; HR 0.60 [95% CI 0.34–1.03], p = 0.002) were associated with syrinx diameter stability, whereas shorter preoperative syrinx length (5.75 ± 4.01 vs 9.65 ± 4.31 levels; HR 0.21 [95% CI 0.12–0.38], p = 0.0001) and smaller pB-C2 distance (6.86 ± 1.27 vs 7.18 ± 1.38 mm; HR 1.44 [95% CI 1.02–2.05], p = 0.04) were associated with syrinx length stability. Finally, younger age at surgery (8.19 ± 5.02 vs 10.29 ± 4.25 years; HR 1.89 [95% CI 1.31–3.04], p = 0.01) was associated with syrinx diameter progression, whereas increased postoperative syrinx diameter (6.73 ± 3.64 vs 3.97 ± 3.07 mm; HR 3.10 [95% CI 1.67–5.76], p = 0.003), was associated with syrinx length progression. PFD versus PFDD was not associated with syrinx progression or reoperation rate.

CONCLUSIONS

These data suggest that PFDD and age are independently associated with radiological syrinx improvement, although forthcoming results from the PFDD versus PFD randomized controlled trial (NCT02669836, clinicaltrials.gov) will best answer this question.