Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Teresa Bell-Stephens x
Clear All Modify Search
Restricted access

Paritosh Pandey, Teresa Bell-Stephens and Gary K. Steinberg

Moyamoya disease is a rare cerebrovascular disease characterized by idiopathic bilateral stenosis or occlusion of bilateral internal carotid arteries and the development of characteristic leptomeningeal collateral vessels at the base of the brain. Typical presentations include transient ischemic attacks or stroke, and hemorrhage. Presentation with movement disorders is extremely rare, especially in the pediatric population. The authors describe the cases of 4 children with moyamoya disease who presented with movement disorders.

Among 446 patients (118 pediatric) with moyamoya disease surgically treated by the senior author, 4 pediatric patients had presented with movement disorders. The clinical records, imaging studies, surgical details, and postoperative clinical and imaging data were retrospectively reviewed.

The initial presenting symptom was movement disorder in all 4 patients: chorea in 2, hemiballismus in 1, and involuntary limb shaking in 1. All the patients had watershed infarcts involving the frontal subcortical region on MR imaging. Additionally, 1 patient had a ganglionic infarct. Single-photon emission computed tomography studies showed frontoparietal cortical and subcortical hypoperfusion in all patients. Three patients had bilateral disease, whereas 1 had unilateral disease. All the patients underwent superficial temporal artery–middle cerebral artery bypass. Postoperatively, all 4 patients had complete improvement in their symptoms. The SPECT scans revealed normal perfusion in 3 patients and a small residual perfusion deficit in 1.

Movement disorders are a rare presenting feature of moyamoya disease. Hypoperfusion of the frontal cortical and subcortical region was seen in all patients, and the symptomatology was attributed to ischemic dysfunction and imbalance in the cortical-subcortical-ganglionic-thalamic-cortical circuitry. Combined revascularization with superficial temporal artery–middle cerebral artery bypass and encephaloduroarteriosynangiosis leads to excellent results.

Full access

Venkatesh S. Madhugiri, Mario K. C. Teo, Joli Vavao, Teresa Bell-Stephens and Gary K. Steinberg

OBJECTIVE

Brainstem arteriovenous malformations (AVMs) are rare lesions that are difficult to diagnose and treat. They are often more aggressive in their behavior when compared with their supratentorial counterparts. The consequence of a brainstem hemorrhage is often devastating, and many patients are in poor neurological status at presentation. The authors examine the factors associated with angiographically confirmed cure and those affecting management outcomes for these complex lesions.

METHODS

This was a retrospective analysis of data gathered from the prospectively maintained Stanford AVM database. Lesions were grouped based on their location in the brainstem (medulla, pons, or midbrain) and the quadrant they occupied. Angiographic cure was dichotomized as completely obliterated or not, and functional outcome was dichotomized as either independent or not independent at last follow-up.

RESULTS

Over a 23-year period, 39 lesions were treated. Of these, 3 were located in the medulla, 14 in the pons, and 22 in the midbrain. At presentation, 92% of the patients had hemorrhage, and only 43.6% were functionally independent. Surgery resulted in the best radiographic cure rates, with a morbidity rate of 12.5%. In all, 53% of patients either improved or remained stable after surgery. Absence of residual nidus and female sex correlated with better outcomes.

CONCLUSIONS

Brainstem AVMs usually present with hemorrhage. Surgery offers the best chance of cure, either in isolation or in combination with other modalities as appropriate.

Restricted access

Raphael Guzman, Marco Lee, Achal Achrol, Teresa Bell-Stephens, Michael Kelly, Huy M. Do, Michael P. Marks and Gary K. Steinberg

Object

Moyamoya disease (MMD) is a rare cerebrovascular disease mainly described in the Asian literature. To address a lack of data on clinical characteristics and long-term outcomes in the treatment of MMD in North America, the authors analyzed their experience at Stanford University Medical Center. They report on a consecutive series of patients treated for MMD and detail their demographics, clinical characteristics, and long-term surgical outcomes.

Methods

Data obtained in consecutive series of 329 patients with MMD treated microsurgically by the senior author (G.K.S.) between 1991 and 2008 were analyzed. Demographic, clinical, and surgical data were prospectively gathered and neurological outcomes assessed in postoperative follow-up using the modified Rankin Scale. Association of demographic, clinical, and surgical data with postoperative outcome was assessed by chi-square, uni- and multivariate logistic regression, and Kaplan-Meier survival analyses.

Results

The authors treated a total of 233 adult patients undergoing 389 procedures (mean age 39.5 years) and 96 pediatric patients undergoing 168 procedures (mean age 10.1 years). Direct revascularization technique was used in 95.1% of adults and 76.2% of pediatric patients. In 264 patients undergoing 450 procedures (mean follow-up 4.9 years), the surgical morbidity rate was 3.5% and the mortality rate was 0.7% per treated hemisphere. The cumulative 5-year risk of perioperative or subsequent stroke or death was 5.5%. Of the 171 patients presenting with a transient ischemic attack, 91.8% were free of transient ischemic attacks at 1 year or later. Overall, there was a significant improvement in quality of life in the cohort as measured using the modified Rankin Scale (p < 0.0001).

Conclusions

Revascularization surgery in patients with MMD carries a low risk, is effective at preventing future ischemic events, and improves quality of life. Patients in whom symptomatic MMD is diagnosed should be offered revascularization surgery.

Full access

Marco Lee, Greg Zaharchuk, Raphael Guzman, Achal Achrol, Teresa Bell-Stephens and Gary K. Steinberg

Moyamoya disease is characterized by a chronic stenoocclusive vasculopathy affecting the terminal internal carotid arteries. The clinical presentation and outcome of moyamoya disease remain varied based on angiographic studies alone, and much work has been done to study cerebral hemodynamics in this group of patients. The ability to measure cerebral blood flow (CBF) accurately continues to improve with time, and with it a better understanding of the pathophysiological mechanisms in patients with moyamoya disease. The main imaging techniques used to evaluate cerebral hemodynamics include PET, SPECT, xenon-enhanced CT, dynamic perfusion CT, MR imaging with dynamic susceptibility contrast and with arterial spin labeling, and Doppler ultrasonography. More invasive techniques include intraoperative ultrasonography. The authors review the current knowledge of CBF in this group of patients and the role each main quantitative method has played in evaluating them, both in the disease state and after surgical intervention.

Restricted access

Ephraim W. Church, Rabia Qaiser, Teresa E. Bell-Stephens, Mark G. Bigder, Eric K. Chow, Summer S. Han, Yasser Y. El-Sayed and Gary K. Steinberg

OBJECTIVE

Moyamoya disease (MMD) disproportionately affects young to middle-aged women. The main treatment for this challenging disease is cerebral bypass surgery. Vascular neurosurgeons often need to counsel women regarding pregnancy following bypass for MMD, but there is a paucity of data. The authors set out to examine neurological and obstetric outcomes in an extensive cohort of MMD patients who had pregnancies following cerebral revascularization at the Stanford Medical Center.

METHODS

The authors identified all patients at their institution who underwent cerebral bypass for MMD from 1990 through 2018 and who later became pregnant. Some of these patients also had pregnancies prior to undergoing bypass surgery, and the authors examined these pregnancies as well. They performed a chart review and brief telephone survey to identify obstetric complications, transient ischemic attacks (TIAs), and strokes. Neurological and obstetric outcomes were compared to published rates. They also compared pre- and post-bypass pregnancy complication rates using logistic regression techniques.

RESULTS

There were 71 pregnancies among 56 women whose mean age was 30.5 years. Among 59 post-bypass pregnancies, there were 5 (8%) perinatal TIAs. There were no MRI-confirmed strokes or strokes with residual deficits. Among 12 pre-bypass pregnancies, there were 3 (25%) TIAs and 2 (17%) MRI-confirmed strokes. There were no hemorrhagic complications in either group. In the generalized estimating equations analysis, performing cerebral revascularization prior to pregnancy versus after pregnancy was associated with lower odds of perinatal stroke or TIA (OR 0.15, p = 0.0061). Nine pregnancies (13%) were complicated by preeclampsia, and there was one (1%) instance of eclampsia. The overall rate of cesarean delivery was 39%. There were 2 miscarriages, both occurring in the first trimester. There were no maternal deaths.

CONCLUSIONS

The authors present neurological and obstetric outcomes data in a large cohort of MMD patients. These data indicate that post-bypass pregnancy is accompanied by low complication rates. There were no ischemic or hemorrhagic strokes among post-bypass pregnant MMD patients. The rate of obstetric complications was low overall. The authors recommend close collaboration between the vascular neurosurgeon and the obstetrician regarding medical management, including blood pressure goals and continuation of low-dose aspirin.

Restricted access

Troels H. Nielsen, Kumar Abhinav, Eric S. Sussman, Summer S. Han, Yingjie Weng, Teresa Bell-Stephens, CNRN, Jeremy J. Heit and Gary K. Steinberg

OBJECTIVE

The only effective treatment for ischemic moyamoya disease (iMMD) is cerebral revascularization by an extracranial to intracranial bypass. The preferred revascularization method remains controversial: direct versus indirect bypass. The purpose of this study was to test the hypothesis that method choice should be personalized based on angiographic, hemodynamic, and clinical characteristics to balance the risk of perioperative major stroke against treatment efficacy.

METHODS

Patients with iMMD were identified retrospectively from a prospectively maintained database. Those with mild to moderate internal carotid artery or M1 segment stenosis, preserved cerebrovascular reserve, intraoperative M4 segment anterograde flow ≥ 8 ml/min, or the absence of frequent and severe transient ischemic attacks (TIAs) or stroke had been assigned to indirect bypass. The criteria for direct bypass were severe ICA or M1 segment stenosis or occlusion, impaired cerebrovascular reserve or steal phenomenon, intraoperative M4 segment retrograde flow or anterograde flow < 8 ml/min, and the presence of frequent and severe TIAs or clinical strokes. The primary study endpoint was MRI-confirmed symptomatic stroke ≤ 7 days postoperatively resulting in a decline in the modified Rankin Scale (mRS) score from preoperatively to 6 months postoperatively. As a secondary endpoint, the authors assessed 6-month postoperative DSA-demonstrated revascularization, which was classified as < 1/3, 1/3–2/3, or > 2/3 of the middle cerebral artery territory.

RESULTS

One hundred thirty-eight patients with iMMD affecting 195 hemispheres revascularized in the period from March 2016 to June 2018 were included in this analysis. One hundred thirty-three hemispheres were revascularized with direct bypass and 62 with indirect bypass. The perioperative stroke rate was 4.7% and 6.8% in the direct and indirect groups, respectively (p = 0.36). Degree of revascularization was higher in the direct bypass group (p = 0.03). The proportion of patients improving to an mRS score 0–1 (from preoperatively to 6 months postoperatively) tended to be higher in the direct bypass group, although the difference between the two bypass groups was not statistically significant (p = 0.27).

CONCLUSIONS

The selective use of an indirect bypass procedure for iMMD did not decrease the perioperative stroke rate. Direct bypass provided a significantly higher degree of revascularization. The authors conclude that direct bypass is the treatment of choice for iMMD.

Full access

Mario Teo, Jeremiah N. Johnson, Teresa E. Bell-Stephens, Michael P. Marks, Huy M. Do, Robert L. Dodd, Michael B. Bober and Gary K. Steinberg

OBJECTIVE

Majewski osteodysplastic primordial dwarfism Type II (MOPD II) is a rare genetic disorder. Features of it include extremely small stature, severe microcephaly, and normal or near-normal intelligence. Previous studies have found that more than 50% of patients with MOPD II have intracranial vascular anomalies, but few successful surgical revascularization or aneurysm-clipping cases have been reported because of the diminutive arteries and narrow surgical corridors in these patients. Here, the authors report on a large series of patients with MOPD II who underwent surgery for an intracranial vascular anomaly.

METHODS

In conjunction with an approved prospective registry of patients with MOPD II, a prospectively collected institutional surgical database of children with MOPD II and intracranial vascular anomalies who underwent surgery was analyzed retrospectively to establish long-term outcomes.

RESULTS

Ten patients with MOPD II underwent surgery between 2005 and 2012; 5 patients had moyamoya disease (MMD), 2 had intracranial aneurysms, and 3 had both MMD and aneurysms. Patients presented with transient ischemic attack (TIA) (n = 2), ischemic stroke (n = 2), intraparenchymal hemorrhage from MMD (n = 1), and aneurysmal subarachnoid hemorrhage (n = 1), and 4 were diagnosed on screening. The mean age of the 8 patients with MMD, all of whom underwent extracranial-intracranial revascularization (14 indirect, 1 direct) was 9 years (range 1–17 years). The mean age of the 5 patients with aneurysms was 15.5 years (range 9–18 years). Two patients experienced postoperative complications (1 transient weakness after clipping, 1 femoral thrombosis that required surgical repair). During a mean follow-up of 5.9 years (range 3–10 years), 3 patients died (1 of subarachnoid hemorrhage, 1 of myocardial infarct, and 1 of respiratory failure), and 1 patient had continued TIAs. All of the surviving patients recovered to their neurological baseline.

CONCLUSIONS

Patients with MMD presented at a younger age than those in whom aneurysms were more prevalent. Microneurosurgery with either intracranial bypass or aneurysm clipping is extremely challenging but feasible at expert centers in patients with MOPD II, and good long-term outcomes are possible.

Restricted access

Douglas Kondziolka, Gary K. Steinberg, Lawrence Wechsler, Carolyn C. Meltzer, Elaine Elder, James Gebel, Sharon DeCesare, Tudor Jovin, Ross Zafonte, Jonathan Lebowitz, John C. Flickinger, David Tong, Michael P. Marks, Catriona Jamieson, Desiree Luu, Teresa Bell-Stephens and Jeffrey Teraoka

Object

No definitive treatment exists to restore lost brain function following a stroke. Transplantation of cultured neuronal cells has been shown to be safe and effective in animal models of stroke and safe in a Phase 1 human trial. In the present study the authors tested the usefulness of human neuron transplantation followed by participation in a 2-month stroke rehabilitation program compared with rehabilitation alone in patients with substantial fixed motor deficits associated with a basal ganglia stroke.

Methods

Human neuronal cells (LBS-Neurons; Layton BioScience, Inc.) were delivered frozen and then thawed and formulated on the morning of surgery. The entry criteria in this randomized, observer-blinded trial of 18 patients included age between 18 and 75 years, completed stroke duration of 1 to 6 years, presence of a fixed motor deficit that was stable for at least 2 months, and no contraindications to stereotactic surgery. Patients were randomized at two centers to receive either 5 or 10 million implanted cells in 25 sites (seven patients per group) followed by participation in a stroke rehabilitation program, or to serve as a nonsurgical control group (rehabilitation only; four patients). The surgical techniques used were the same at both centers. All patients underwent extensive pre- and postoperative motor testing and imaging. Patients received cyclosporine A for 1 week before and 6 months after surgery. The primary efficacy measure was a change in the European Stroke Scale (ESS) motor score at 6 months. Secondary outcomes included Fugl-Meyer, Action Research Arm Test, and Stroke Impact Scale scores, as well as the results of other motor tests. Nine strokes were ischemic in origin and nine were hemorrhagic.

All 14 patients who underwent surgery (ages 40–70 years) underwent uncomplicated surgeries. Serial evaluations (maximum duration 24 months) demonstrated no cell-related adverse serological or imaging-defined effects. One patient suffered a single seizure, another had a syncopal event, and in another there was burr-hole drainage of an asymptomatic chronic subdural hematoma. Four of seven patients who received 5 million cells (mean improvement 6.9 points) and two of seven who received 10 million cells had improved ESS scores at 6 months; however, there was no significant change in the ESS motor score in patients who received cell implants (p = 0.756) compared with control or baseline values (p = 0.06). Compared with baseline, wrist movement and hand movement scores recorded on the Fugl-Meyer Stroke Assessment instrument were not improved (p = 0.06). The Action Research Arm Test gross hand-movement scores improved compared with control (p = 0.017) and baseline (p = 0.001) values. On the Stroke Impact Scale, the 6-month daily activities score changed compared with baseline (p = 0.045) but not control (p = 0.056) scores, and the Everyday Memory test score improved in comparison with baseline (p = 0.004) values.

Conclusions

Human neuronal cells can be produced in culture and implanted stereotactically into the brains of patients with motor deficits due to stroke. Although a measurable improvement was noted in some patients and this translated into improved activities of daily living in some patients as well, this study did not find evidence of a significant benefit in motor function as determined by the primary outcome measure. This experimental trial indicates the safety and feasibility of neuron transplantation for patients with motor stroke.

Restricted access

Michael E. Kelly, Raphael Guzman, John Sinclair, Teresa E. Bell-Stephens, Regina Bower, Scott Hamilton, Michael P. Marks, Huy M. Do, Steven D. Chang, John R. Adler, Richard P. Levy and Gary K. Steinberg

Object

Posterior fossa arteriovenous malformations (AVMs) are relatively uncommon and often difficult to treat. The authors present their experience with multimodality treatment of 76 posterior fossa AVMs, with an emphasis on Spetzler–Martin Grades III–V AVMs.

Methods

Seventy-six patients with posterior fossa AVMs treated with radiosurgery, surgery, and endovascular techniques were analyzed.

Results

Between 1982 and 2006, 36 patients with cerebellar AVMs, 33 with brainstem AVMs, and 7 with combined cerebellar–brainstem AVMs were treated. Natural history data were calculated for all 76 patients. The risk of hemorrhage from presentation until initial treatment was 8.4% per year, and it was 9.6% per year after treatment and before obliteration. Forty-eight patients had Grades III–V AVMs with a mean follow-up of 4.8 years (range 0.1–18.4 years, median 3.1 years). Fifty-two percent of patients with Grades III–V AVMs had complete obliteration at the last follow-up visit. Three (21.4%) of 14 patients were cured with a single radiosurgery treatment, and 4 (28.6%) of 14 with 1 or 2 radiosurgery treatments. Twenty-one (61.8%) of 34 patients were cured with multimodality treatment. The mean Glasgow Outcome Scale (GOS) score after treatment was 3.8. Multivariate analysis performed in the 48 patients with Grades III–V AVMs showed radiosurgery alone to be a negative predictor of cure (p = 0.0047). Radiosurgery treatment alone was not a positive predictor of excellent clinical outcome (GOS Score 5; p > 0.05). Nine (18.8%) of 48 patients had major neurological complications related to treatment.

Conclusions

Single-treatment radiosurgery has a low cure rate for posterior fossa Spetzler–Martin Grades III–V AVMs. Multimodality therapy nearly tripled this cure rate, with an acceptable risk of complications and excellent or good clinical outcomes in 81% of patients. Radiosurgery alone should be used for intrinsic brainstem AVMs, and multimodality treatment should be considered for all other posterior fossa AVMs.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010