Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Tatsuya Sato x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Masanori Sato, Namio Kodama, Tatsuya Sasaki, and Mamoru Ohta

✓ Olfactory evoked potentials (OEPs), obtained by electrical stimulation of the olfactory mucosa, were recorded in dogs and humans to develop an objective method for evaluating olfactory functions.

In dogs, OEPs were recorded from the olfactory tract and the scalp. The latency of the first negative peak was approximately 40 msec. A response was not obtained after stimulation of the nasal mucosa and disappeared after sectioning of the olfactory nerve. With increasing frequencies of repetitive stimulation, the amplitude was reduced, suggesting that the response was synaptically mediated. These results demonstrate that evoked potentials from the olfactory tract and the scalp following electrical stimulation of the olfactory mucosa originate specifically from the olfactory system.

In humans, a stimulating electrode with a soft catheter was fixed on the olfactory mucosa. The OEPs from the olfactory tract, recorded with a negative peak of approximately 27 msec, had similar characteristics to OEPs found in dogs. The OEPs from the olfactory tract in humans also originate specifically from the olfactory system. The authors postulate that OEPs obtained by electrical stimulation of the olfactory mucosa may prove useful for intraoperative monitoring of olfactory functions.

Restricted access

Tatsuya Sasaki, Kyouichi Suzuki, Masato Matsumoto, Taku Sato, Namio Kodama, and Keiko Yago

Object. Evoked potentials elicited by electrical stimulation of the oculomotor nerve and recorded from surface electrodes placed on the skin around the eyeball reportedly originate in the eye and are represented on electrooculograms. Because evoked potentials recorded from surface electrodes are extremely similar to those of extraocular muscles, which are represented on electromyograms, the authors investigated the true origin of these potentials.

Methods. Evoked potentials elicited by electrical stimulation of the canine oculomotor nerve were recorded from surface electrodes placed on the skin around the eyeball. A thread sutured to the center of the cornea was pulled and the potentials that were evoked during the resultant eye movement were recorded. These potentials were confirmed to originate in the eye and to be represented on electrooculograms because their waveforms were unaffected by the administration of muscle relaxant. To eliminate the influence of this source, the retina, a main origin of standing potentials of the eyeball, was removed. This resulted in the disappearance of electrooculography (EOG) waves elicited by eye movement. Surface potentials elicited by oculomotor nerve stimulation were the same before and after removal of the retina. Again the oculomotor nerve was electrically stimulated and electromyography (EMG) response of the extraocular muscles was recorded at the same time that potentials were recorded from the surface electrodes. In their peak latencies, amplitudes, and waveforms, the evoked potentials obtained from surface electrodes were almost identical to EMG responses of extraocular muscles.

Conclusions. Evoked potentials elicited by electrical stimulation of the oculomotor nerves and obtained from surface electrodes originated from EMG responses of extraocular muscles. These evoked potentials do not derive from the eye.

Restricted access

Tomoyuki Kawataki, Eiji Sato, Tatsuya Kato, Takashi Sato, Toru Horikoshi, and Hiroyuki Kinouchi

In this report, a rare case of dysembryoplastic neuroepithelial tumor (DNET) initially presented as a small white matter lesion with calcification adjacent to the lateral ventricle and extending to the frontal cortex after 7 years. This 1-year-old boy initially suffered from partial seizures. Initial CT revealed a small, low-density area surrounding a tiny calcified mass in the deep white matter of the left frontal lobe. Seven years later, his seizures had become intractable to antiepileptic agents, and MR imaging demonstrated a relatively large mass extending from the calcified lesion up to the adjacent cortical surface. He underwent surgery and the tumor was subtotally removed. Histological examination of the tumor verified it as a DNET consisting of clusters of small oligodendrocytes with floating neurons in the mucoid background. The pattern of the tumor progression in this case suggests that a DNET in the cortex originates from the subependymal germinal layer near the ventricle.

Open access

Yosuke Sato, Yoshihito Tsuji, Yuta Kawauchi, Kazuki Iizuka, Yusuke Kobayashi, Ryo Irie, Tatsuya Sugiyama, and Tohru Mizutani

BACKGROUND

In epilepsy surgery for cavernoma with intractable focal epilepsy, removal of the cavernoma with its surrounding hemosiderin deposition and other extended epileptogenic zone has been shown to improve postsurgical seizures. However, there has been no significant association between such an epileptogenic zone and intraoperative electrocorticography (ECoG) findings. The authors recently demonstrated that high regular gamma oscillation (30–70 Hz) regularity (GOR) significantly correlates with epileptogenicity.

OBSERVATIONS

The authors evaluated the utility of intraoperative GOR analysis in epilepsy surgery for cavernomas. The authors also analyzed intraoperative ECoG data from 6 patients with cavernomas. The GOR was calculated using a sample entropy algorithm. In 4 patients, the GOR was significantly high in the area with the pathological hemosiderin deposition. In 2 patients with temporal cavernoma, the GOR was significantly high in both the hippocampus and the area with the pathological hemosiderin deposition. ECoG showed no obvious epileptic waveforms in 3 patients, whereas extensive spikes were observed in 3 patients. All patients underwent cavernoma removal plus resection of the area with significantly high GOR. The 2 patients with temporal cavernomas underwent additional hippocampal transection. All patients were seizure free after surgery.

LESSONS

The high GOR may be a novel intraoperative marker of the epileptogenic zone in epilepsy surgery for cavernomas.

Restricted access

Masato Matsumoto, Masanori Sato, Masayuki Nakano, Yuji Endo, Youichi Watanabe, Tatsuya Sasaki, Kyouichi Suzuki, and Namio Kodama

Object. The aim of this study was to assess whether aneurysm surgery can be performed in patients with ruptured cerebral aneurysms by using three-dimensional computerized tomography (3D-CT) angiography alone, without conventional catheter angiography.

Methods. In a previous study, 60 patients with subarachnoid hemorrhage (SAH) from ruptured aneurysms were prospectively evaluated using both 3D-CT and conventional angiography, which resulted in a 100% accuracy for 3D-CT angiography in the diagnosis of ruptured aneurysms, and a 96% accuracy in the identification of associated unruptured aneurysms. The results led the authors to consider replacing conventional angiography with 3D-CT angiography for use in diagnosing ruptured aneurysms, and to perform surgery aided by 3D-CT angiography alone without conventional angiography. Based on the results, 100 consecutive patients with SAH who had undergone surgery in the acute stage based on 3D-CT angiography findings have been studied since December 1996. One hundred ruptured aneurysms, including 41 associated unruptured lesions, were detected using 3D-CT angiography. In seven of 100 ruptured aneurysms, which included four dissecting vertebral artery aneurysms, two basilar artery (BA) tip aneurysms, and one BA—superior cerebellar artery aneurysm, 3D-CT angiography was followed by conventional angiography to acquire diagnostic confirmation or information about the vein of Labbé, which was needed to guide the surgical approach for BA tip aneurysms. All of the ruptured aneurysms were confirmed at surgery and treated successfully. Ninety-three patients who underwent operation with the aid of 3D-CT angiography only had no complications related to the lack of information gathered by conventional angiography. The 3D-CT angiography studies provided the authors with the aneurysm location as well as surgically important information on the configuration of its sac and neck, the presence of calcification in the aneurysm wall, and its relationship to the adjacent vessels and bone structures.

Conclusions The authors believe that 3D-CT angiography can replace conventional angiography in the diagnosis of ruptured aneurysms and that surgery can be performed in almost all acutely ruptured aneurysms by using only 3D-CT angiography without conventional angiography.

Restricted access

Shota Tamagawa, Takatoshi Okuda, Hidetoshi Nojiri, Tatsuya Sato, Rei Momomura, Yukoh Ohara, Takeshi Hara, and Muneaki Ishijima

OBJECTIVE

Previous reports have focused on the complications of L5 nerve root injury caused by anterolateral misplacement of the S1 pedicle screws. Anatomical knowledge of the L5 nerve root in the pelvis is essential for safe and effective placement of the sacral screw. This cadaveric study aimed to investigate the course of the L5 nerve root in the pelvis and to clarify a safe zone for inserting the sacral screw.

METHODS

Fifty-four L5 nerve roots located bilaterally in 27 formalin-fixed cadavers were studied. The ventral rami of the L5 nerve roots were dissected along their courses from the intervertebral foramina to the lesser pelvis. The running angles of the L5 nerve roots from the centerline were measured in the coronal plane. In addition, the distances from the ala of the sacrum to the L5 nerve roots were measured in the sagittal plane.

RESULTS

The authors found that the running angles of the L5 nerve roots changed at the most anterior surface of the ala of the sacrum. The angles of the bilateral L5 nerve roots from the right and left L5 intervertebral foramina to their inflection points were 13.77° ± 5.01° and 14.65° ± 4.71°, respectively. The angles of the bilateral L5 nerve roots from the right and left inflection points to the lesser pelvis were 19.66° ± 6.40° and 20.58° ± 5.78°, respectively. There were no significant differences between the angles measured in the right and left nerve roots. The majority of the L5 nerves coursed outward after changing their angles at the inflection point. The distances from the ala of the sacrum to the L5 nerve roots in the sagittal plane were less than 1 mm in all cases, which indicated that the L5 nerve roots were positioned close to the ala of the sacrum and had poor mobility.

CONCLUSIONS

All of the L5 nerve roots coursed outward after exiting the intervertebral foramina and never inward. To prevent iatrogenic L5 nerve root injury, surgeons should insert the S1 pedicle screw medially with an angle > 0° toward the inside of the S1 anterior foramina and the sacral alar screw laterally with an angle > 30°.

Restricted access

Tomohiro Kawaguchi, Shinjitsu Nishimura, Masayuki Kanamori, Hiroki Takazawa, Shunsuke Omodaka, Kenya Sato, Noriko Maeda, Yoko Yokoyama, Hiroshi Midorikawa, Tatsuya Sasaki, and Michiharu Nishijima

Object

The difference in the hemodynamics of wall shear stress (WSS) and oscillatory shear index (OSI) between ruptured and unruptured aneurysms is not well understood. The authors investigated the hemodynamic similarities and dissimilarities in ruptured and thin-walled unruptured aneurysm blebs.

Methods

Magnetic resonance imaging–based fluid dynamics analysis was used to calculate WSS and OSI, and hemodynamic and intraoperative findings were compared. The authors also compared ruptured and unruptured thin-walled blebs for the magnitude of WSS and OSI.

Results

Intraoperatively, 13 ruptured and 139 thin-walled unruptured aneurysm blebs were identified. Twelve of the ruptured (92.3%) and 124 of the unruptured blebs (89.2%) manifested low WSS and high OSI. The degree of WSS was significantly lower in ruptured (0.49 ± 0.12 Pa) than in unruptured (0.64 ± 0.15 Pa; p < 0.01) blebs.

Conclusions

Ruptured and unruptured blebs shared a distinctive pattern of low WSS and high OSI. The degree of WSS at the rupture site was significantly lower than in the unruptured thin-walled blebs.

Restricted access

Tatsuya Sasaki, Takeshi Itakura, Kyouichi Suzuki, Hiromichi Kasuya, Ryoji Munakata, Hiroyuki Muramatsu, Tsuyoshi Ichikawa, Taku Sato, Yuji Endo, Jun Sakuma, and Masato Matsumoto

Object

To obtain a clinically useful method of intraoperative monitoring of visual evoked potentials (VEPs), the authors developed a new light-stimulating device and introduced electroretinography (ERG) to ascertain retinal light stimulation after induction of venous anesthesia.

Methods

The new stimulating device consists of 16 red light–emitting diodes embedded in a soft silicone disc to avoid deviation of the light axis after frontal scalp-flap reflection. After induction of venous anesthesia with propofol, the authors performed ERG and VEP recording in 100 patients (200 eyes) who were at intraoperative risk for visual impairment.

Results

Stable ERG and VEP recordings were obtained in 187 eyes. In 12 eyes, stable ERG data were recorded but VEPs could not be obtained, probably because all 12 eyes manifested severe preoperative visual dysfunction. The disappearance of ERG data and VEPs in the 13th eye after frontal scalp-flap reflection suggested technical failure attributable to deviation of the light axis. The criterion for amplitude changes was defined as a 50% increase or decrease in amplitude compared with the control level. In 1 of 187 eyes the authors observed an increase in intraoperative amplitude and postoperative visual function improvement. Of 169 eyes without amplitude changes, 17 manifested improved visual function postoperatively, 150 showed no change, and 2 worsened (1 patient with a temporal tumor developed a slight visual field defect in both eyes). Of 3 eyes with intraoperative VEP deterioration and subsequent recovery upon changing the operative maneuver, 1 improved and 2 exhibited no change. The VEP amplitude decreased without subsequent recovery to 50% of the control level in 14 eyes, and all of these developed various degrees of postoperative deterioration of visual function.

Conclusions

With the strategy introduced here it is possible to record intraoperative VEPs in almost all patients except in those with severe visual dysfunction. In some patients, postoperative visual deterioration can be avoided or minimized by intraoperative VEP recording. All patients without an intraoperative decrease in the VEP amplitude were without severe postoperative deterioration in visual function, suggesting that intraoperative VEP monitoring may contribute to prevent postoperative visual dysfunction.

Restricted access

Yawara Eguchi, Masaki Norimoto, Munetaka Suzuki, Ryota Haga, Hajime Yamanaka, Hiroshi Tamai, Tatsuya Kobayashi, Sumihisa Orita, Miyako Suzuki, Kazuhide Inage, Hirohito Kanamoto, Koki Abe, Tomotaka Umimura, Takashi Sato, Yasuchika Aoki, Atsuya Watanabe, Masao Koda, Takeo Furuya, Junichi Nakamura, Tsutomu Akazawa, Kazuhisa Takahashi, and Seiji Ohtori

OBJECTIVE

The purpose of this study was to determine the relationship between vertebral bodies, psoas major morphology, and the course of lumbar nerve tracts using diffusion tensor imaging (DTI) before lateral interbody fusion (LIF) to treat spinal deformities.

METHODS

DTI findings in a group of 12 patients (all women, mean age 74.3 years) with degenerative lumbar scoliosis (DLS) were compared with those obtained in a matched control group of 10 patients (all women, mean age 69.8 years) with low-back pain but without scoliosis. A T2-weighted sagittal view was fused to tractography from L3 to L5 and separated into 6 zones (zone A, zones 1–4, and zone P) comprising equal quarters of the anteroposterior diameters, and anterior and posterior to the vertebral body, to determine the distribution of nerves at various intervertebral levels (L3–4, L4–5, and L5–S1). To determine psoas morphology, the authors examined images for a rising psoas sign at the level of L4–5, and the ratio of the anteroposterior diameter (AP) to the lateral diameter (lat), or AP/lat ratio, was calculated. They assessed the relationship between apical vertebrae, psoas major morphology, and the course of nerve tracts.

RESULTS

Although only 30% of patients in the control group showed a rising psoas sign, it was present in 100% of those in the DLS group. The psoas major was significantly extended on the concave side (AP/lat ratio: 2.1 concave side, 1.2 convex side). In 75% of patients in the DLS group, the apex of the curve was at L2 or higher (upper apex) and the psoas major was extended on the concave side. In the remaining 25%, the apex was at L3 or lower (lower apex) and the psoas major was extended on the convex side. Significant anterior shifts of lumbar nerves compared with controls were noted at each intervertebral level in patients with DLS. Nerves on the extended side of the psoas major were significantly shifted anteriorly. Nerve pathways on the convex side of the scoliotic curve were shifted posteriorly.

CONCLUSIONS

A significant anterior shift of lumbar nerves was noted at all intervertebral levels in patients with DLS in comparison with findings in controls. On the convex side, the nerves showed a posterior shift. In LIF, a convex approach is relatively safer than an approach from the concave side. Lumbar nerve course tracking with DTI is useful for assessing patients with DLS before LIF.