Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Tae Hoon Roh x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Fatih Incekara, Marion Smits, and Arnaud J. P. E. Vincent

Free access

Tae Hoon Roh, Ji Woong Oh, Chang Ki Jang, Seonah Choi, Eui Hyun Kim, Chang-Ki Hong, and Se-Hyuk Kim

OBJECTIVE

Virtual reality (VR) is increasingly being used for education and surgical simulation in neurosurgery. So far, the 3D sources for VR simulation have been derived from medical images, which lack real color. The authors made photographic 3D models from dissected cadavers and integrated them into the VR platform. This study aimed to introduce a method of developing a photograph-integrated VR and to evaluate the educational effect of these models.

METHODS

A silicone-injected cadaver head was prepared. A CT scan of the specimen was taken, and the soft tissue and skull were segmented to 3D objects. The cadaver was dissected layer by layer, and each layer was 3D scanned by a photogrammetric method. The objects were imported to a free VR application and layered. Using the head-mounted display and controllers, the various neurosurgical approaches were demonstrated to neurosurgical residents. After performing hands-on virtual surgery with photographic 3D models, a feedback survey was collected from 31 participants.

RESULTS

Photographic 3D models were seamlessly integrated into the VR platform. Various skull base approaches were successfully performed with photograph-integrated VR. During virtual dissection, the landmark anatomical structures were identified based on their color and shape. Respondents rated a higher score for photographic 3D models than for conventional 3D models (4.3 ± 0.8 vs 3.2 ± 1.1, respectively; p = 0.001). They responded that performing virtual surgery with photographic 3D models would help to improve their surgical skills and to develop and study new surgical approaches.

CONCLUSIONS

The authors introduced photographic 3D models to the virtual surgery platform for the first time. Integrating photographs with the 3D model and layering technique enhanced the educational effect of the 3D models. In the future, as computer technology advances, more realistic simulations will be possible.

Restricted access

Tae Hoon Roh, Seok-Gu Kang, Ju Hyung Moon, Kyoung Su Sung, Hun Ho Park, Se Hoon Kim, Eui Hyun Kim, Chang-Ki Hong, Chang-Ok Suh, and Jong Hee Chang

OBJECTIVE

Following resection of glioblastoma (GBM), microscopic remnants of the GBM tumor remaining in nearby tissue cause tumor recurrence more often than for other types of tumors, even after gross-total resection (GTR). Although surgical oncologists traditionally resect some of the surrounding normal tissue, whether further removal of nearby tissue may improve survival in GBM patients is unknown. In this single-center retrospective study, the authors assessed whether lobectomy confers a survival benefit over GTR without lobectomy when treating GBMs in the noneloquent area.

METHODS

The authors selected 40 patients who had undergone GTR of a histopathologically diagnosed isocitrate dehydrogenase (IDH)–wild type GBM in the right frontal or temporal lobe and divided the patients into 2 groups according to whether GTR of the tumor involved lobectomy, defined as a supratotal resection (SupTR group, n = 20) or did not (GTR group, n = 20). Progression-free survival (PFS), overall survival (OS), and Karnofsky Performance Status (KPS) scores were compared between groups (p ≤ 0.05 for statistically significant differences).

RESULTS

The median postoperative PFS times for each group were as follows: GTR group, 11.5 months (95% CI 8.8–14.2) and SupTR group, 30.7 months (95% CI 4.3–57.1; p = 0.007). The median postoperative OS times for each group were as follows: GTR group, 18.7 months (95% CI 14.3–23.1) and SupTR group, 44.1 months (95% CI 25.1–63.1; p = 0.040). The mean postoperative KPS scores (GTR, 76.5; SupTR, 77.5; p = 0.904) were not significantly different. In multivariate analysis, survival for the SupTR group was significantly longer than that for the GTR group in terms of both PFS (HR 0.230; 95% CI 0.090–0.583; p = 0.002) and OS (HR 0.247; 95% CI 0.086–0.704; p = 0.009).

CONCLUSIONS

In cases of completely resectable, noneloquent-area GBMs, SupTR provides superior PFS and OS without negatively impacting patient performance.

Restricted access

*Jaejoon Lim, Kyoung Su Sung, Woohyun Kim, Jihwan Yoo, In-Ho Jung, Seonah Choi, Seung Hoon Lim, Tae Hoon Roh, Chang-Ki Hong, and Ju Hyung Moon

OBJECTIVE

The endoscopic transorbital approach (ETOA) has been developed, permitting a new surgical corridor. Due to the vertical limitation of the ETOA, some lesions of the anterior cranial fossa are difficult to access. The ETOA with superior-lateral orbital rim (SLOR) osteotomy can achieve surgical freedom of vertical as well as horizontal movement. The purpose of this study was to confirm the feasibility of the ETOA with SLOR osteotomy.

METHODS

Anatomical dissections were performed in 5 cadaveric heads with a neuroendoscope and neuronavigation system. ETOA with SLOR osteotomy was performed on one side of the head, and ETOA with lateral orbital rim (LOR) osteotomy was performed on the other side. After analysis of the results of the cadaveric study, the ETOA with SLOR osteotomy was applied in 6 clinical cases.

RESULTS

The horizontal and vertical movement range through ETOA with SLOR osteotomy (43.8° ± 7.49° and 36.1° ± 3.32°, respectively) was improved over ETOA with LOR osteotomy (31.8° ± 5.49° and 23.3° ± 1.34°, respectively) (p < 0.01). Surgical freedom through ETOA with SLOR osteotomy (6025.1 ± 220.1 mm3) was increased relative to ETOA with LOR osteotomy (4191.3 ± 57.2 mm3) (p < 0.01); these values are expressed as the mean ± SD. Access levels of ETOA with SLOR osteotomy were comfortable, including anterior skull base lesion and superior orbital area. The view range of the endoscope for anterior skull base lesions was increased through ETOA with SLOR osteotomy. After SLOR osteotomy, the space for moving surgical instruments and the endoscope was widened. Anterior clinoidectomy could be achieved successfully using ETOA with SLOR osteotomy.

The authors performed ETOA with SLOR osteotomy in 6 cases of brain tumor. In all 6 cases, complete removal of the tumor was successfully accomplished. In the 3 cases of anterior clinoidal meningioma, anterior clinoidectomy was performed easily and safely, and manipulation of the extended dural margin and origin dura mater was possible. There was no complication related to this approach.

CONCLUSIONS

The authors evaluated the clinical feasibility of ETOA with SLOR osteotomy based on a cadaveric study. ETOA with SLOR osteotomy could be applied to more diverse disease groups that do not permit conventional ETOA or to cases in which surgical application is challenging. ETOA with SLOR osteotomy might serve as an opportunity to broaden the indication for the ETOA.

Restricted access

Eui Hyun Kim, Jihwan Yoo, In-Ho Jung, Ji Woong Oh, Ju-Seong Kim, Jin Sook Yoon, Ju Hyung Moon, Seok-Gu Kang, Jong Hee Chang, and Tae Hoon Roh

OBJECTIVE

The insula is a complex anatomical structure. Accessing tumors in the insula remains a challenge due to its anatomical complexity and the high chance of morbidity. The goal of this study was to evaluate the feasibility of an endoscopic transorbital approach (ETOA) to the insular region based on a cadaveric study.

METHODS

One cadaveric head was used to study the anatomy of the insula and surrounding vessels. Then, anatomical dissection was performed in 4 human cadaveric heads using a dedicated endoscopic system with the aid of neuronavigation guidance. To assess the extent of resection, CT scanning was performed before and after dissection. The insular region was directly exposed by a classic transcranial approach to check the extent of resection from the side with a classic transcranial approach.

RESULTS

The entire procedure consisted of two phases: an extradural orbital phase and an intradural sylvian phase. After eyelid incision, the sphenoid bone and orbital roof were extensively drilled out with exposure of the frontal and temporal dural layers. After making a dural window, the anterior ramus of the sylvian fissure was opened and dissected. The M2 segment of the middle cerebral artery (MCA) was identified and traced posterolaterally. A small corticectomy was performed on the posterior orbital gyrus. Through the window between the lateral lenticulostriate arteries and M2, the cortex and medulla of the insula were resected in an anteroposterior direction without violation of the M2 segment of the MCA or its major branches. When confirmed by pterional craniotomy, the sylvian fissure and the MCA were found to be anatomically preserved. After validation of the feasibility and safety based on a cadaveric study, the ETOA was successfully performed in a patient with a high-grade glioma (WHO grade III) in the right insula.

CONCLUSIONS

The transorbital route can be considered a potential option to access tumors located in the insula. Using an ETOA, the MCA and its major branches were identified and preserved while removal was performed along the long axis of the insula. In particular, lesions in the anterior part of the insula are most benefited by this approach. Because this approach was implemented in only one patient, additional discussion and further verification is required.

Full access

Roh-Eul Yoo, Tae Jin Yun, Young Dae Cho, Jung Hyo Rhim, Koung Mi Kang, Seung Hong Choi, Ji-hoon Kim, Jeong Eun Kim, Hyun-Seung Kang, Chul-Ho Sohn, Sun-Won Park, and Moon Hee Han

OBJECTIVE

Arterial spin labeling perfusion-weighted imaging (ASL-PWI) enables quantification of tissue perfusion without contrast media administration. The aim of this study was to explore whether cerebral blood flow (CBF) from ASL-PWI can reliably predict angiographic vascularity of meningiomas.

METHODS

Twenty-seven patients with intracranial meningiomas, who had undergone preoperative ASL-PWI and digital subtraction angiography prior to resection, were included. Angiographic vascularity was assessed using a 4-point grading scale and meningiomas were classified into 2 groups: low vascularity (Grades 0 and 1; n = 11) and high vascularity (Grades 2 and 3; n = 16). Absolute CBF, measured at the largest section of the tumor, was normalized to the contralateral gray matter. Correlation between the mean normalized CBF (nCBF) and angiographic vascularity was determined and the mean nCBF values of the 2 groups were compared. Diagnostic performance of the nCBF for differentiating between the 2 groups was assessed.

RESULTS

The nCBF had a significant positive correlation with angiographic vascularity (ρ = 0.718; p < 0.001). The high-vascularity group had a significantly higher nCBF than the low-vascularity group (3.334 ± 2.768 and 0.909 ± 0.468, respectively; p = 0.003). At the optimal nCBF cutoff value of 1.733, sensitivity and specificity for the differential diagnosis of the 2 groups were 69% (95% CI 41%–89%) and 100% (95% CI 72%–100%), respectively. The area under the receiver operating characteristic curve was 0.875 (p < 0.001).

CONCLUSIONS

ASL-PWI may provide a reliable and noninvasive means of predicting angiographic vascularity of meningiomas. It may thus assist in selecting potential candidates for preoperative digital subtraction angiography and embolization in clinical practice.