Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Steven Rowson x
Clear All Modify Search
Free access

Eamon T. Campolettano, Steven Rowson and Stefan M. Duma

OBJECTIVE

Although 70% of football players in the United States are youth players (6–14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices.

METHODS

A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact.

RESULTS

A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6–68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7–21.9 impacts/hr] and those with a blocker [95% CI 10.5–23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2–21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g.

CONCLUSIONS

In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle altogether.

Free access

Steven Rowson, Ray W. Daniel and Stefan M. Duma

With the increased national concern about concussions in football, recent research has focused on evaluating the impact performance of modern football helmets. Specifically, this technical note offers a biomechanical analysis of classic leather helmets compared with modern helmets. Furthermore, modern helmets were examined to illustrate the performance differences between the better- and worse-performing ones. A total of 1224 drop tests were performed from a range of drop heights and impact locations on 11 different helmet types (10 modern and 1 leather helmet model). The resulting head acceleration was used to assess the risk of concussion for each drop test. The results of this analysis demonstrate that modern helmets are significantly and substantially superior to leather helmets in all impact scenarios, and that notable differences exist among modern helmets.

Free access

Eamon T. Campolettano, Ryan A. Gellner and Steven Rowson

OBJECTIVE

Even in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure.

METHODS

A total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity.

RESULTS

A total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). “Back” position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams.

CONCLUSIONS

High-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In this cohort, game impact rates exceeded those for practice. Back players, who were often positioned in the open field, were shown to experience elevated levels of head impact exposure relative to players at other positions. The analysis also suggests that practice intensity, which may be influenced by coaching style, may also affect high-magnitude head impact exposure. Future studies should investigate this aspect as a factor affecting head impact exposure.

Free access

Adam Bartsch, Edward Benzel, Vincent Miele and Vikas Prakash

Free access

Ann-Christine Duhaime, Jonathan G. Beckwith, Arthur C. Maerlender, Thomas W. McAllister, Joseph J. Crisco, Stefan M. Duma, P. Gunnar Brolinson, Steven Rowson, Laura A. Flashman, Jeffrey J. Chu and Richard M. Greenwald

Object

Concussive head injuries have received much attention in the medical and public arenas, as concerns have been raised about the potential short- and long-term consequences of injuries sustained in sports and other activities. While many student athletes have required evaluation after concussion, the exact definition of concussion has varied among disciplines and over time. The authors used data gathered as part of a multiinstitutional longitudinal study of the biomechanics of head impacts in helmeted collegiate athletes to characterize what signs, symptoms, and clinical histories were used to designate players as having sustained concussions.

Methods

Players on 3 college football teams and 4 ice hockey teams (male and female) wore helmets instrumented with Head Impact Telemetry (HIT) technology during practices and games over 2–4 seasons of play. Preseason clinical screening batteries assessed baseline cognition and reported symptoms. If a concussion was diagnosed by the team medical staff, basic descriptive information was collected at presentation, and concussed players were reevaluated serially. The specific symptoms or findings associated with the diagnosis of acute concussion, relation to specific impact events, timing of symptom onset and diagnosis, and recorded biomechanical parameters were analyzed.

Results

Data were collected from 450 athletes with 486,594 recorded head impacts. Forty-eight separate concussions were diagnosed in 44 individual players. Mental clouding, headache, and dizziness were the most common presenting symptoms. Thirty-one diagnosed cases were associated with an identified impact event; in 17 cases no specific impact event was identified. Onset of symptoms was immediate in 24 players, delayed in 11, and unspecified in 13. In 8 cases the diagnosis was made immediately after a head impact, but in most cases the diagnosis was delayed (median 17 hours). One diagnosed concussion involved a 30-second loss of consciousness; all other players retained alertness. Most diagnoses were based on self-reported symptoms. The mean peak angular and rotational acceleration values for those cases associated with a specific identified impact were 86.1 ± 42.6g (range 16.5–177.9g) and 3620 ± 2166 rad/sec2 (range 183–7589 rad/sec2), respectively.

Conclusions

Approximately two-thirds of diagnosed concussions were associated with a specific contact event. Half of all players diagnosed with concussions had delayed or unclear timing of onset of symptoms. Most had no externally observed findings. Diagnosis was usually based on a range of self-reported symptoms after a variable delay. Accelerations clustered in the higher percentiles for all impact events, but encompassed a wide range. These data highlight the heterogeneity of criteria for concussion diagnosis, and in this sports context, its heavy reliance on self-reported symptoms. More specific and standardized definitions of clinical and objective correlates of a “concussion spectrum” may be needed in future research efforts, as well as in the clinical diagnostic arena.

Free access

Steven Rowson, Stefan M. Duma, Richard M. Greenwald, Jonathan G. Beckwith, Jeffrey J. Chu, Kevin M. Guskiewicz, Jason P. Mihalik, Joseph J. Crisco, Bethany J. Wilcox, Thomas W. McAllister, Arthur C. Maerlender, Steven P. Broglio, Brock Schnebel, Scott Anderson and P. Gunnar Brolinson

Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%–75.8%). When controlling for each player's exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ2 = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury.

Free access

Don Comrie and Sean J. Morey