Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Steve E. Braunstein x
  • Refine by Access: all x
Clear All Modify Search
Free access

Enrique Vargas, Matthew S. Susko, Praveen V. Mummaneni, Steve E. Braunstein, and Dean Chou

OBJECTIVE

Stereotactic body radiation therapy (SBRT) is utilized to deliver highly conformal, dose-escalated radiation to a target while sparing surrounding normal structures. Spinal SBRT can allow for durable local control and palliation of disease while minimizing the risk of damage to the spinal cord; however, spinal SBRT has been associated with an increased risk of vertebral body fractures. This study sought to compare the fracture rates between SBRT and conventionally fractionated external-beam radiation therapy (EBRT) in patients with metastatic spine tumors.

METHODS

Records from patients treated at the University of California, San Francisco, with radiation therapy for metastatic spine tumors were retrospectively reviewed. Vertebral body fracture and local control rates were compared between SBRT and EBRT. Ninety-six and 213 patients were identified in the SBRT and EBRT groups, respectively. Multivariate analysis identified the need to control for primary tumor histology (p = 0.003 for prostate cancer, p = 0.0496 for renal cell carcinoma). The patient-matched EBRT comparison group was created by matching SBRT cases using propensity scores for potential confounders, including the Spinal Instability Neoplastic Score (SINS), the number and location of spine levels treated, sex, age at treatment, duration of follow-up (in months) after treatment, and primary tumor histology. Covariate balance following group matching was confirmed using the Student t-test for unequal variance. Statistical analysis, including propensity score matching and multivariate analysis, was performed using R software and related packages.

RESULTS

A total of 90 patients met inclusion criteria, with 45 SBRT and 45 EBRT matched cases. Balance of the covariates, SINS, age, follow-up time, and primary tumor histology after the matching process was confirmed between groups (p = 0.062, p = 0.174, and 0.991, respectively, along with matched tumor histology). The SBRT group had a higher 5-year rate of vertebral body fracture at 22.22% (n = 10) compared with 6.67% (n = 3) in the EBRT group (p = 0.044). Survival analysis was used to adjust for uneven follow-up time and showed a significant difference in fracture rates between the two groups (p = 0.044). SBRT also was associated with a higher rate of local control (86.67% vs 77.78%).

CONCLUSIONS

Patients with metastatic cancer undergoing SBRT had higher rates of vertebral body fractures compared with patients undergoing EBRT, and this difference held up after survival analysis. SBRT also had higher rates of initial local control than EBRT but this difference did not hold up after survival analysis, most likely because of a high percentage of radiosensitive tumors in the EBRT cohort.

Restricted access

Enrique Vargas, Praveen V. Mummaneni, Joshua Rivera, Jeremy Huang, Sigurd H. Berven, Steve E. Braunstein, and Dean Chou

OBJECTIVE

Wound complications are a common adverse event following metastatic spine tumor surgery. Some patients with spinal metastases may first undergo radiation but eventually require spinal surgery because of either cord compression or instability. The authors compared wound complication rates in patients who had undergone surgery for metastatic disease and received preoperative radiation treatments, postoperative radiation, or no radiation.

METHODS

Records from patients treated at the University of California, San Francisco, for metastatic spine disease between 2005 and 2017 were retrospectively reviewed. Baseline characteristics were collected, including preoperative Karnofsky Performance Status (KPS), Spine Instability Neoplastic Score, total radiation dose, indication for surgery, diabetes status, time between radiation and surgery, use of perioperative chemotherapy or steroids, estimated blood loss, extent of fusion, and preoperative albumin level. Wound complication was defined as poor healing, dehiscence, or infection per the Centers for Disease Control and Prevention guidelines, within 6 months of surgery. One-way ANOVA was used to compare means across groups. Cumulative incidence analysis with competing risk methodology was used to adjust for risk of death during follow-up. Statistical analysis was performed using R software.

RESULTS

Two hundred five patients with adequate medical records were identified. Seventy patients had received preoperative radiation, 74 had received postoperative radiation within 6 months after surgery, and 61 had received no radiation at the surgical site. Wound complication rates were similar across the 3 cohorts: 14.3% (n = 10) in the group with preoperative radiation, 10.8% (n = 8) in the group that received postoperative radiation, and 11.5% (n = 7) in the group with no radiation (p = 0.773). Competing risk analysis showed a higher cumulative incidence of wound complications for the preoperative cohort, though this difference was not significant (p = 0.46). Overall, 89 patients were treated with external beam radiation therapy (EBRT), whereas 55 received stereotactic body radiation therapy (SBRT). There was no significant difference in wound complications for patients treated with EBRT (11.2%, n = 10) versus SBRT (14.5%, n = 8; p = 0.825). KPS was the only factor correlated with wound complications on univariate analysis (p = 0.03).

CONCLUSIONS

Wound complication rates did not differ across the 3 cohorts: patients treated with preoperative radiation, postoperative radiation within 6 months of surgery, or no radiation. The effect size was small for KPS and likely does not represent a clinically significant predictor of wound complications.

Free access

Maria R. H. Castro, Stephen T. Magill, Ramin A. Morshed, Jacob S. Young, Steve E. Braunstein, Michael W. McDermott, and Edward F. Chang

OBJECTIVE

Tumors compressing the trigeminal nerve can cause facial pain, numbness, or paresthesias. Limited data exist describing how these symptoms change after resection and what factors predict symptom improvement. The objective of this study was to report trigeminal pain and sensory outcomes after tumor resection and identify factors predicting postoperative symptom improvement.

METHODS

This retrospective study included patients with tumors causing facial pain, numbness, or paresthesias who underwent resection. Trigeminal schwannomas were excluded. Logistic regression, recursive partitioning, and time-to-event analyses were used to report outcomes and identify variables associated with facial sensory outcomes.

RESULTS

Eighty-six patients met inclusion criteria, and the median follow-up was 3.1 years; 63 patients (73%) had meningiomas and 23 (27%) had vestibular schwannomas (VSs). Meningioma patients presented with pain, numbness, and paresthesias in 56%, 76%, and 25% of cases, respectively, compared with 9%, 91%, and 39%, respectively, for patients with VS. Most meningioma patients had symptoms for less than 1 year (60%), whereas the majority of VS patients had symptoms for 1–5 years (59%). The median meningioma and VS diameters were 3.0 and 3.4 cm, respectively. For patients with meningiomas, gross-total resection (GTR) was achieved in 27% of patients, near-total resection (NTR) in 29%, and subtotal resection (STR) in 44%. For patients with VS, GTR was achieved in 9%, NTR in 30%, and STR in 61%. Pain improved immediately after tumor resection in 81% of patients and in 92% of patients by 6 weeks. Paresthesias improved immediately in 80% of patients, increasing to 84% by 6 weeks. Numbness improved more slowly, with 52% of patients improving immediately, increasing to 79% by 2 years. Pain recurred in 22% of patients with meningiomas and 0% of patients with VSs. After resection, the Barrow Neurological Institute (BNI) facial pain intensity score improved in 73% of patients. The tumor diameter significantly predicted improvement in BNI score (OR 0.47/cm larger, 95% CI 0.22–0.99; p = 0.047). Complete decompression of the trigeminal nerve was associated with qualitative improvement in pain (p = 0.037) and decreased pain recurrence (OR 0.08, 95% CI 0.01–0.67; p = 0.024).

CONCLUSIONS

Most patients with facial sensory symptoms caused by meningiomas or VSs experienced improvement after resection. Surgery led to immediate and sustained improvement in pain and paresthesias, whereas numbness was slower to improve. Patients with smaller tumors and complete decompression of the trigeminal nerve were more likely to experience improvement in facial pain.

Free access

Enrique Vargas, Dennis T. Lockney, Praveen V. Mummaneni, Alexander F. Haddad, Joshua Rivera, Xiao Tan, Alysha Jamieson, Yasmine Mahmoudieh, Sigurd Berven, Steve E. Braunstein, and Dean Chou

OBJECTIVE

Within the Spine Instability Neoplastic Score (SINS) classification, tumor-related potential spinal instability (SINS 7–12) may not have a clear treatment approach. The authors aimed to examine the proportion of patients in this indeterminate zone who later required surgical stabilization after initial nonoperative management. By studying this patient population, they sought to determine if a clear SINS cutoff existed whereby the spine is potentially unstable due to a lesion and would be more likely to require stabilization.

METHODS

Records from patients treated at the University of California, San Francisco, for metastatic spine disease from 2005 to 2019 were retrospectively reviewed. Seventy-five patients with tumor-related potential spinal instability (SINS 7–12) who were initially treated nonoperatively were included. All patients had at least a 1-year follow-up with complete medical records. A univariate chi-square test and Student t-test were used to compare categorical and continuous outcomes, respectively, between patients who ultimately underwent surgery and those who did not. A backward likelihood multivariate binary logistic regression model was used to investigate the relationship between clinical characteristics and surgical intervention. Recursive partitioning analysis (RPA) and single-variable logistic regression were performed as a function of SINS.

RESULTS

Seventy-five patients with a total of 292 spinal metastatic sites were included in this study; 26 (34.7%) patients underwent surgical intervention, and 49 (65.3%) did not. There was no difference in age, sex, comorbidities, or lesion location between the groups. However, there were more patients with a SINS of 12 in the surgery group (55.2%) than in the no surgery group (44.8%) (p = 0.003). On multivariate analysis, SINS > 11 (OR 8.09, CI 1.96–33.4, p = 0.004) and Karnofsky Performance Scale (KPS) score < 60 (OR 0.94, CI 0.89–0.98, p = 0.008) were associated with an increased risk of surgery. KPS score was not correlated with SINS (p = 0.4). RPA by each spinal lesion identified an optimal cutoff value of SINS > 10, which were associated with an increased risk of surgical intervention. Patients with a surgical intervention had a higher incidence of complications on multivariable analysis (OR 2.96, CI 1.01–8.71, p = 0.048).

CONCLUSIONS

Patients with a mean SINS of 11 or greater may be at increased risk of mechanical instability requiring surgery after initial nonoperative management. RPA showed that patients with a KPS score of 60 or lower and a SINS of greater than 10 had increased surgery rates.

Full access

William C. Chen, Stephen T. Magill, Ashley Wu, Harish N. Vasudevan, Olivier Morin, Manish K. Aghi, Philip V. Theodosopoulos, Arie Perry, Michael W. McDermott, Penny K. Sneed, Steve E. Braunstein, and David R. Raleigh

OBJECTIVE

The goal of this study was to investigate the impact of adjuvant radiotherapy (RT) on local recurrence and overall survival in patients undergoing primary resection of atypical meningioma, and to identify predictive factors to inform patient selection for adjuvant RT.

METHODS

One hundred eighty-two patients who underwent primary resection of atypical meningioma at a single institution between 1993 and 2014 were retrospectively identified. Patient, meningioma, and treatment data were extracted from the medical record and compared using the Kaplan-Meier method, log-rank tests, multivariate analysis (MVA) Cox proportional hazards models with relative risk (RR), and recursive partitioning analysis.

RESULTS

The median patient age and imaging follow-up were 57 years (interquartile range [IQR] 45–67 years) and 4.4 years (IQR 1.8–7.5 years), respectively. Gross-total resection (GTR) was achieved in 114 cases (63%), and 42 patients (23%) received adjuvant RT. On MVA, prognostic factors for death from any cause included GTR (RR 0.4, 95% CI 0.1–0.9, p = 0.02) and MIB1 labeling index (LI) ≤ 7% (RR 0.4, 95% CI 0.1–0.9, p = 0.04). Prognostic factors on MVA for local progression included GTR (RR 0.2, 95% CI 0.1–0.5, p = 0.002), adjuvant RT (RR 0.2, 95% CI 0.1–0.4, p < 0.001), MIB1 LI ≤ 7% (RR 0.2, 95% CI 0.1–0.5, p < 0.001), and a remote history of prior cranial RT (RR 5.7, 95% CI 1.3–18.8, p = 0.03). After GTR, adjuvant RT (0 of 10 meningiomas recurred, p = 0.01) and MIB1 LI ≤ 7% (RR 0.1, 95% CI 0.003–0.3, p < 0.001) were predictive for local progression on MVA. After GTR, 2.2% of meningiomas with MIB1 LI ≤ 7% recurred (1 of 45), compared with 38% with MIB1 LI > 7% (13 of 34; p < 0.001). Recursive partitioning analysis confirmed the existence of a cohort of patients at high risk of local progression after GTR without adjuvant RT, with MIB1 LI > 7%, and evidence of brain or bone invasion. After subtotal resection, adjuvant RT (RR 0.2, 95% CI 0.04–0.7, p = 0.009) and ≤ 5 mitoses per 10 hpf (RR 0.1, 95% CI 0.03–0.4, p = 0.002) were predictive on MVA for local progression.

CONCLUSIONS

Adjuvant RT improves local control of atypical meningioma irrespective of extent of resection. Although independent validation is required, the authors’ results suggest that MIB1 LI, the number of mitoses per 10 hpf, and brain or bone invasion may be useful guides to the selection of patients who are most likely to benefit from adjuvant RT after resection of atypical meningioma.

Full access

William C. Chen, Stephen T. Magill, Ashley Wu, Harish N. Vasudevan, Olivier Morin, Manish K. Aghi, Philip V. Theodosopoulos, Arie Perry, Michael W. McDermott, Penny K. Sneed, Steve E. Braunstein, and David R. Raleigh

OBJECTIVE

The goal of this study was to investigate the impact of adjuvant radiotherapy (RT) on local recurrence and overall survival in patients undergoing primary resection of atypical meningioma, and to identify predictive factors to inform patient selection for adjuvant RT.

METHODS

One hundred eighty-two patients who underwent primary resection of atypical meningioma at a single institution between 1993 and 2014 were retrospectively identified. Patient, meningioma, and treatment data were extracted from the medical record and compared using the Kaplan-Meier method, log-rank tests, multivariate analysis (MVA) Cox proportional hazards models with relative risk (RR), and recursive partitioning analysis.

RESULTS

The median patient age and imaging follow-up were 57 years (interquartile range [IQR] 45–67 years) and 4.4 years (IQR 1.8–7.5 years), respectively. Gross-total resection (GTR) was achieved in 114 cases (63%), and 42 patients (23%) received adjuvant RT. On MVA, prognostic factors for death from any cause included GTR (RR 0.4, 95% CI 0.1–0.9, p = 0.02) and MIB1 labeling index (LI) ≤ 7% (RR 0.4, 95% CI 0.1–0.9, p = 0.04). Prognostic factors on MVA for local progression included GTR (RR 0.2, 95% CI 0.1–0.5, p = 0.002), adjuvant RT (RR 0.2, 95% CI 0.1–0.4, p < 0.001), MIB1 LI ≤ 7% (RR 0.2, 95% CI 0.1–0.5, p < 0.001), and a remote history of prior cranial RT (RR 5.7, 95% CI 1.3–18.8, p = 0.03). After GTR, adjuvant RT (0 of 10 meningiomas recurred, p = 0.01) and MIB1 LI ≤ 7% (RR 0.1, 95% CI 0.003–0.3, p < 0.001) were predictive for local progression on MVA. After GTR, 2.2% of meningiomas with MIB1 LI ≤ 7% recurred (1 of 45), compared with 38% with MIB1 LI > 7% (13 of 34; p < 0.001). Recursive partitioning analysis confirmed the existence of a cohort of patients at high risk of local progression after GTR without adjuvant RT, with MIB1 LI > 7%, and evidence of brain or bone invasion. After subtotal resection, adjuvant RT (RR 0.2, 95% CI 0.04–0.7, p = 0.009) and ≤ 5 mitoses per 10 hpf (RR 0.1, 95% CI 0.03–0.4, p = 0.002) were predictive on MVA for local progression.

CONCLUSIONS

Adjuvant RT improves local control of atypical meningioma irrespective of extent of resection. Although independent validation is required, the authors’ results suggest that MIB1 LI, the number of mitoses per 10 hpf, and brain or bone invasion may be useful guides to the selection of patients who are most likely to benefit from adjuvant RT after resection of atypical meningioma.

Restricted access

Shunichi Nishiyama, Tadatsugu Morimoto, Masatsugu Tsukamoto, Yu Toda, and Masaaki Mawatari

Restricted access

Penny K. Sneed, Jason W. Chan, Lijun Ma, Steve E. Braunstein, Philip V. Theodosopoulos, Shannon E. Fogh, Jean L. Nakamura, Lauren Boreta, David R. Raleigh, Benjamin P. Ziemer, Olivier Morin, Shawn L. Hervey-Jumper, and Michael W. McDermott

OBJECTIVE

The authors previously evaluated risk and time course of adverse radiation effects (AREs) following stereotactic radiosurgery (SRS) for brain metastases, excluding lesions treated after prior SRS. In the present analysis they focus specifically on single-fraction salvage SRS to brain metastases previously treated with SRS or hypofractionated SRS (HFSRS), evaluating freedom from progression (FFP) and the risk and time course of AREs.

METHODS

Brain metastases treated from September 1998 to May 2019 with single-fraction SRS after prior SRS or HFSRS were analyzed. Serial follow-up magnetic resonance imaging (MRI) and surgical pathology reports were reviewed to score local treatment failure and AREs. The Kaplan-Meier method was used to estimate FFP and risk of ARE measured from the date of repeat SRS with censoring at the last brain MRI.

RESULTS

A total of 229 retreated brain metastases in 124 patients were evaluable. The most common primary cancers were breast, lung, and melanoma. The median interval from prior SRS/HFSRS to repeat SRS was 15.4 months, the median prescription dose was 18 Gy, and the median duration of follow-up imaging was 14.5 months. At 1 year after repeat SRS, FFP was 80% and the risk of symptomatic ARE was 11%. The 1-year risk of imaging changes, including asymptomatic RE and symptomatic ARE, was 30%. Among lesions that demonstrated RE, the median time to onset was 6.7 months (IQR 4.7–9.9 months) and the median time to peak imaging changes was 10.1 months (IQR 5.6–13.6 months). Lesion size by quadratic mean diameter (QMD) showed similar results for QMDs ranging from 0.75 to 2.0 cm (1-year FFP 82%, 1-year risk of symptomatic ARE 11%). For QMD < 0.75 cm, the 1-year FFP was 86% and the 1-year risk of symptomatic ARE was only 2%. Outcomes were worse for QMDs 2.01–3.0 cm (1-year FFP 65%, 1-year risk of symptomatic ARE 24%). The risk of symptomatic ARE was not increased with tyrosine kinase inhibitors or immunotherapy before or after repeat SRS.

CONCLUSIONS

RE on imaging was common after repeat SRS (30% at 1 year), but the risk of a symptomatic ARE was much less (11% at 1 year). The results of repeat single-fraction SRS were good for brain metastases ≤ 2 cm. The authors recommend an interval ≥ 6 months from prior SRS and a prescription dose ≥ 18 Gy. Alternatives such as HFSRS, laser interstitial thermal therapy, or resection with adjuvant radiation should be considered for recurrent brain metastases > 2 cm.

Full access

Michael A. Garcia, Ann Lazar, Sai Duriseti, David R. Raleigh, Christopher P. Hess, Shannon E. Fogh, Igor J. Barani, Jean L. Nakamura, David A. Larson, Philip Theodosopoulos, Michael McDermott, Penny K. Sneed, and Steve Braunstein

OBJECTIVE

High-resolution double-dose gadolinium-enhanced Gamma Knife (GK) radiosurgery-planning MRI (GK MRI) on the day of GK treatment can detect additional brain metastases undiagnosed on the prior diagnostic MRI scan (dMRI), revealing increased intracranial disease burden on the day of radiosurgery, and potentially necessitating a reevaluation of appropriate management. The authors identified factors associated with detecting additional metastases on GK MRI and investigated the relationship between detection of additional metastases and postradiosurgery patient outcomes.

METHODS

The authors identified 326 patients who received GK radiosurgery at their institution from 2010 through 2013 and had a prior dMRI available for comparison of numbers of brain metastases. Factors predictive of additional brain metastases on GK MRI were investigated using logistic regression analysis. Overall survival was estimated by Kaplan-Meier method, and postradiosurgery distant intracranial failure was estimated by cumulative incidence measures. Multivariable Cox proportional hazards model and Fine-Gray regression modeling assessed potential risk factors of overall survival and distant intracranial failure, respectively.

RESULTS

The mean numbers of brain metastases (SD) on dMRI and GK MRI were 3.4 (4.2) and 5.8 (7.7), respectively, and additional brain metastases were found on GK MRI in 48.9% of patients. Frequencies of detecting additional metastases for patients with 1, 2, 3–4, and more than 4 brain metastases on dMRI were 29.5%, 47.9%, 55.9%, and 79.4%, respectively (p < 0.001). An index brain metastasis with a diameter greater than 1 cm on dMRI was inversely associated with detecting additional brain metastases, with an adjusted odds ratio of 0.57 (95% CI 0.4–0.9, p = 0.02). The median time between dMRI and GK MRI was 22 days (range 1–88 days), and time between scans was not associated with detecting additional metastases. Patients with additional brain metastases did not have larger total radiosurgery target volumes, and they rarely had an immediate change in management (abortion of radiosurgery or addition of whole-brain radiation therapy) due to detection of additional metastases. Patients with additional metastases had a higher incidence of distant intracranial failure than those without additional metastases (p = 0.004), with an adjusted subdistribution hazard ratio of 1.4 (95% CI 1.0–2.0, p = 0.04). Significantly worse overall survival was not detected for patients with additional brain metastases on GK MRI (log-rank p = 0.07), with the relative adjusted hazard ratio of 1.07, (95% CI 0.81–1.41, p = 0.65).

CONCLUSIONS

Detecting additional brain metastases on GK MRI is strongly associated with the number of brain metastases on dMRI and inversely associated with the size of the index brain metastasis. The discovery of additional brain metastases at time of GK radiosurgery is very unlikely to lead to aborting radiosurgery but is associated with a higher incidence of distant intracranial failure. However, there is not a significant difference in survival.

▪ CLASSIFICATION OF EVIDENCE Type of question: prognostic; study design: retrospective cohort trial; evidence: Class IV.

Restricted access

Ramin A. Morshed, Satvir Saggi, Daniel D. Cummins, Annette M. Molinaro, Jacob S. Young, Jennifer A. Viner, Javier E. Villanueva-Meyer, Ezequiel Goldschmidt, Lauren Boreta, Steve E. Braunstein, Edward F. Chang, Michael W. McDermott, Mitchel S. Berger, Philip V. Theodosopoulos, Shawn L. Hervey-Jumper, Manish K. Aghi, and Mariza Daras

OBJECTIVE

Resection of brain metastases (BMs) may be associated with increased risk of leptomeningeal disease (LMD). This study examined rates and predictors of LMD, including imaging subtypes, in patients who underwent resection of a BM followed by postoperative radiation.

METHODS

A retrospective, single-center study was conducted examining overall LMD, classic LMD (cLMD), and nodular LMD (nLMD) risk. Logistic regression, Cox proportional hazards, and random forest analyses were performed to identify risk factors associated with LMD.

RESULTS

Of the 217 patients in the cohort, 47 (21.7%) developed postoperative LMD, with 19 cases (8.8%) of cLMD and 28 cases (12.9%) of nLMD. Six-, 12-, and 24-month LMD-free survival rates were 92.3%, 85.6%, and 71.4%, respectively. Patients with cLMD had worse survival outcomes from the date of LMD diagnosis compared with nLMD (median 2.4 vs 6.9 months, p = 0.02, log-rank test). Cox proportional hazards analysis identified cerebellar/insular/occipital location (hazard ratio [HR] 3.25, 95% confidence interval [CI] 1.73–6.11, p = 0.0003), absence of extracranial disease (HR 2.49, 95% CI 1.27–4.88, p = 0.008), and ventricle contact (HR 2.82, 95% CI 1.5–5.3, p = 0.001) to be associated with postoperative LMD. A predictive model using random forest analysis with an area under the receiver operating characteristic curve of 0.87 in a test cohort identified tumor location, systemic disease status, and tumor volume as the most important factors associated with LMD.

CONCLUSIONS

Tumor location, absence of extracranial disease at the time of surgery, ventricle contact, and increased tumor volume were associated with LMD. Further work is needed to determine whether escalating therapies in patients at risk of LMD prevents disease dissemination.