Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Stephen Skirboll x
Clear All Modify Search
Restricted access

David W. Newell, Andrew T. Dailey and Stephen L. Skirboll

✓ The authors describe the use of a microanastomotic device to perform intracranial end-to-end vascular anastomoses. Direct end-to-end anastomosis was performed between the superficial temporal artery and branches of the middle cerebral artery (MCA) in three patients. Two patients had moyamoya disease, with severe proximal MCA disease, and one suffered an internal carotid artery occlusion with poor collateral flow. All patients reported a history of recent ischemic symptoms. Each anastomosis was accomplished in less than 15 minutes with technically satisfactory results. Postoperative angiographic studies demonstrated patency of the bypasses in all patients.

Free access

Aatman M. Shah, Henry Jung and Stephen Skirboll

Cranioplasty, one of the oldest surgical procedures used to repair cranial defects, has undergone many revolutions over time to find the ideal material to improve patient prognosis. Cranioplasty offers cosmetic and protective benefits for patients with cranial defects. The first primitive cranioplasty procedures date back to 7000 bc and used metal and gourds to repair cranial defects. Cranioplasty was first documented by Fallopius who described repair using gold plates; the first bone graft was documented by van Meekeren. The first significant improvement for this procedure began with experimentation involving bone grafts in the late 19th century as a more natural approach for repairing cranial defects. The next impetus for advancement came because of wartime injuries incurred during World Wars I and II and involved experimentation with synthetic materials to counter the common complications associated with bone grafts. Methyl methacrylate, hydroxyapatite, ceramics, and polyetheretherketone implants among other materials have since been researched and used. Research now has shifted toward molecular biology to improve the ability of the patient to regenerate bone using bone growth factors. This paper reviews the evolution of materials used over time in addition to the various advantages and pitfalls associated with each change. It is important for neurosurgeons to be mindful of how these techniques have evolved in order to gain a better understanding of this procedure and how it has been adapted.

Restricted access

John W. German, Klugh Arnett III and Stephen L. Skirboll

Object

Falls from pickup truck cargo areas represent a unique mode of injury in children and adolescents. The goal of this study was to identify the neurological spectrum of injuries resulting from children riding in the back of pickup trucks.

Methods

The authors undertook a retrospective review of the University of New Mexico Hospital trauma registry of data compiled over a 7-year period. Their goal was to identify instances in which a fall or ejection from a pickup truck cargo area was the mechanism of injury. The charts of pediatric patients (≤ 16 years of age) with neurological injuries were reviewed and analyzed.

Seventy-three pediatric patients with injuries related to riding in the cargo areas of trucks were identified, of which 53 children (73%) had sustained neurological injuries. Among these 53 children, 64% sustained isolated head injuries, 15% isolated spine injuries, 9.4% combined spine and head injuries, 2% combined peripheral nerve, spine, and head injuries, 4% isolated peripheral nerve injuries, and 5.6% concussive events. In 53.4% of patients with neurological injuries the results of computed tomography (CT) examination were abnormal. In 36% of patients with Glasgow Coma Scale (GCS) scores of 14 to 15 there was evidence of intracranial hemorrhage on head CT scans. Injury Severity Scores were similar in the patients who were ejected and those who fell from cargo areas, but patients who were ejected had a lower mean GCS score than those who suffered falls (GCS score 12.5 and 14.3, respectively).

Conclusions

Falls or ejections from pickup truck cargo areas result in a relatively high incidence of traumatic head, spine, and peripheral nerve injury. Head CT scanning should therefore be considered in pediatric patients with this mechanism of injury. Cargo area occupancy poses an unacceptable risk of injury and should be avoided.

Restricted access
Restricted access

Yi-Ren Chen, Beatrice Ugiliweneza, Eric Burton, Shiao Y. Woo, Maxwell Boakye and Stephen Skirboll

OBJECTIVE

Glioblastoma is a primary glial neoplasm with a median survival of approximately 1 year. There are anecdotal reports that postoperative infection may confer a survival advantage in patients with glioblastoma. However, only a few case reports in the literature, along with 2 retrospective cohort studies, show some potential link between infection and prolonged survival in patients with glioblastoma. The objective of this study was to evaluate the effect of postoperative infection in patients with glioblastoma using a large national database.

METHODS

The linked Surveillance, Epidemiology, and End Results (SEER)–Medicare database was searched to identify patients 66 years of age and older with glioblastoma, with and without infection, from 1997 to 2010. The primary outcome was survival after diagnosis. The statistical analysis was performed with a graphical representation using Kaplan-Meier curves, univariate analysis with the log-rank test, and multivariate analysis with proportional hazards modeling.

RESULTS

A total of 3784 patients with glioblastoma were identified from the database, and from these, 369 (9.8%) had postoperative infection within 1 month of surgery. In patients with glioblastoma who had an infection within 1 month of surgery, there was no significant difference in survival (median 5 months) compared with patients with no infection (median 6 months; p = 0.17). The study also showed that older age, increased Gagne comorbidity score, and having diabetes may be negatively associated with survival.

CONCLUSIONS

Infection after craniotomy within 1 month was not associated with a survival benefit in patients with glioblastoma.

Restricted access

Cary D. Alberstone, Stephen L. Skirboll, Edward C. Benzel, John A. Sanders, Blaine L. Hart, Nevan G. Baldwin, Charles L. Tessman, John T. Davis and Roland R. Lee

Object. The availability of large-array biomagnetometers has led to advances in magnetoencephalography that permit scientists and clinicians to map selected brain functions onto magnetic resonance images. This merging of technologies is termed magnetic source (MS) imaging. The present study was undertaken to assess the role of MS imaging for the guidance of presurgical planning and intraoperative neurosurgical technique used in patients with intracranial mass lesions.

Methods. Twenty-six patients with intracranial mass lesions underwent a medical evaluation consisting of MS imaging, a clinical history, a neurological examination, and assessment with the Karnofsky Performance Scale. Magnetic source imaging was used to locate the somatosensory cortex in 25 patients, the visual cortex in six, and the auditory cortex in four. The distance between the lesion and the functional cortex was determined for each patient.

Twenty-one patients underwent a neurosurgical procedure. As a surgical adjunct, a frameless stereotactic navigational system was used in 17 cases and a standard stereotactic apparatus in four cases. Because of the results of their MS imaging examination, two patients were not offered surgery, four underwent a stereotactic biopsy procedure, 10 were treated with a subtotal surgical resection, and seven were treated with complete surgical resection. One patient deteriorated before a procedure could be scheduled and, therefore, was not offered surgery, and two patients were offered surgery but declined. Three patients experienced surgery-related complications.

Conclusions. Magnetic source imaging is an important noninvasive neurodiagnostic tool that provides critical information regarding the spatial relationship of a brain lesion to functional cortex. By providing this information, MS imaging facilitates a minimum-risk management strategy and helps guide operative neurosurgical technique in patients with intracranial mass lesions.