Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Stephen R. Gannon x
  • All content x
Clear All Modify Search
Full access

Babatunde J. Akinpelu, Scott L. Zuckerman, Stephen R. Gannon, Ashly Westrick, Chevis Shannon, and Robert P. Naftel

OBJECTIVE

Isolated transverse and spinous process fractures (TPFx and SPFx) in the thoracic and/or lumbar region have been deemed clinically insignificant in the adult population. This same rule is often applied to the pediatric population; however, little evidence exists in this younger group. The goal of this study was to describe the clinical, radiographic, and long-term data on isolated TPFx and SPFx in an exclusively pediatric population.

METHODS

A retrospective chart review at Monroe Carell Jr. Children's Hospital at Vanderbilt University identified 82 pediatric patients with isolated TPFx and/or SPFx following a traumatic event between January 2000 and December 2013. Patient demographic information, presenting symptoms, radiographic characteristics, and follow-up data were collected. Follow-up was used to determine the outcome (presence of neurological deficits) of such injuries via complete physical examination and, when available, radiographic evidence.

RESULTS

In the 82 identified patients, the mean age was 15.5 ± 3.1 years (mean is expressed ± SD throughout), with 72 injuries (87.8%) resulting from a motor vehicle, motorcycle, or all-terrain vehicle accident. There was a mean of 1.7 ± 1.0 fractured vertebral levels involved and a mean of 1.8 ± 1.1 fractures was identified per patient. Seventy-one patients (86.6%) needed bedside pain control, 7 (8.5%) were prescribed a brace, and 4 patients (4.9%) received a collar. Physical therapy was recommended for 12 patients (14.6%). A total of 84.1% had follow-up, and the mean length of follow-up was 19 ± 37 months. No patients had true neurological deficits at presentation or follow-up as a result of their isolated fractures, whereas 95.1% had other associated system injuries.

CONCLUSIONS

These data shows that there is no appreciable long-term complication associated with isolated thoracic and/or lumbar TPFx and/or SPFx in an exclusively pediatric population. Because these fractures are, however, associated with high-energy blunt trauma, they often result in associated soft-tissue or other skeletal injury. All pediatric patients in the cohort benefited from conservative management and aggressive treatment of their comorbidities.

Free access

Andrew T. Hale, David P. Stonko, Amber Brown, Jaims Lim, David J. Voce, Stephen R. Gannon, Truc M. Le, and Chevis N. Shannon

OBJECTIVE

Modern surgical planning and prognostication requires the most accurate outcomes data to practice evidence-based medicine. For clinicians treating children following traumatic brain injury (TBI) these data are severely lacking. The first aim of this study was to assess published CT classification systems in the authors’ pediatric cohort. A pediatric-specific machine-learning algorithm called an artificial neural network (ANN) was then created that robustly outperformed traditional CT classification systems in predicting TBI outcomes in children.

METHODS

The clinical records of children under the age of 18 who suffered a TBI and underwent head CT within 24 hours after TBI (n = 565) were retrospectively reviewed.

RESULTS

“Favorable” outcome (alive with Glasgow Outcome Scale [GOS] score ≥ 4 at 6 months postinjury, n = 533) and “unfavorable” outcome (death at 6 months or GOS score ≤ 3 at 6 months postinjury, n = 32) were used as the primary outcomes. The area under the receiver operating characteristic (ROC) curve (AUC) was used to delineate the strength of each CT grading system in predicting survival (Helsinki, 0.814; Rotterdam, 0.838; and Marshall, 0.781). The AUC for CT score in predicting GOS score ≤ 3, a measure of overall functionality, was similarly predictive (Helsinki, 0.717; Rotterdam, 0.748; and Marshall, 0.663). An ANN was then constructed that was able to predict 6-month outcomes with profound accuracy (AUC = 0.9462 ± 0.0422).

CONCLUSIONS

This study showed that machine-learning can be leveraged to more accurately predict TBI outcomes in children.

Free access

Emily W. Chan, Stephen R. Gannon, Chevis N. Shannon, Jeffrey E. Martus, Gregory A. Mencio, and Christopher M. Bonfield

OBJECTIVE

Adolescent idiopathic scoliosis (AIS), the most common type of scoliosis, often presents immediately prior to a woman’s childbearing years; however, research investigating the impact of AIS on women’s health, particularly pregnancy delivery outcomes, is sparse, with existing literature reporting mixed findings. Similarly limited are studies examining the change in scoliotic curve during or after pregnancy. Therefore, this study aims to determine 1) the impact of scoliotic curvature on obstetric complications (preterm births, induction of labor, and urgent/emergency caesarean section delivery), 2) regional anesthetic decision making and success during delivery for these patients, and 3) the effect of pregnancy on curve progression.

METHODS

Records of all pregnant patients diagnosed with AIS at the authors’ institution who delivered between January 2002 and September 2016 were retrospectively reviewed. Demographic information, pre- and postpartum radiographic Cobb angles, and clinical data for each pregnancy and delivery were recorded and analyzed. The Wilcoxon rank-sum test and the Wilcoxon signed-rank test were used for statistical analyses.

RESULTS

Fifty-nine patients (84 deliveries) were included; 14 patients had undergone prior posterior spinal fusion. The median age at AIS diagnosis was 15.2 years, and the median age at delivery was 21.8 years. Overall, the median major Cobb angle prior to the first pregnancy was 25° (IQR 15°–40°). Most births were by spontaneous vaginal delivery (n = 45; 54%); elective caesarean section was performed in 17 deliveries (20%). Obstetric complications included preterm birth (n = 18; 21.4%), induction of labor (n = 20; 23.8%), and urgent/emergency caesarean section (n = 12; 14.0%); none were associated with severity of scoliosis curve or prior spinal fusion. Attempts at spinal anesthesia were successful 99% of the time (70/71 deliveries), even among the patients who had undergone prior spinal fusion (n = 13). There were only 3 instances of provider refusal to administer spinal anesthesia. In the subset of 11 patients who underwent postpartum scoliosis radiography, there was no statistically significant change in curve magnitude either during or immediately after pregnancy.

CONCLUSIONS

The results of this study suggest that there was no effect of the severity of scoliosis on delivery complications or regional anesthetic decision making in pregnant patients with AIS. Moreover, scoliosis was not observed to progress significantly during or immediately after pregnancy. Larger prospective studies are needed to further investigate these outcomes, the findings of which can guide the prenatal education and counseling of pregnant patients with AIS.

Free access

Michael C. Dewan, Jaims Lim, Clinton D. Morgan, Stephen R. Gannon, Chevis N. Shannon, John C. Wellons III, and Robert P. Naftel

OBJECTIVE

Endoscopic third ventriculostomy with choroid plexus cauterization (ETV/CPC) offers an alternative to shunt treatment for infantile hydrocephalus. Diagnosing treatment failure is dependent on infantile hydrocephalus metrics, including head circumference, fontanel quality, and ventricle size. However, it is not clear to what degree these metrics should be expected to change after ETV/CPC. Using these clinical metrics, the authors present and analyze the decision making in cases of ETV/CPC failure.

METHODS

Infantile hydrocephalus metrics, including bulging fontanel, head circumference z-score, and frontal and occipital horn ratio (FOHR), were compared between ETV/CPC failures and successes. Treatment outcome predictive values of metrics individually and in combination were calculated.

RESULTS

Forty-four patients (57% males, median age 1.2 months) underwent ETV/CPC for hydrocephalus; of these patients, 25 (57%) experienced failure at a median time of 51 days postoperatively. Patients experiencing failure were younger than those experiencing successful treatment (0.8 vs 3.9 months, p = 0.01). During outpatient follow-up, bulging anterior fontanel, progressive macrocephaly, and enlarging ventricles each demonstrated a positive predictive value (PPV) of no less than 71%, but a bulging anterior fontanel remained the most predictive indicator of ETV/CPC failure, with a PPV of 100%, negative predictive value of 73%, and sensitivity of 72%. The highest PPVs and specificities existed when the clinical metrics were present in combination, although sensitivities decreased expectedly. Only 48% of failures were diagnosed on the basis all 3 hydrocephalus metrics, while only 37% of successes were negative for all 3 metrics. In the remaining 57% of patients, a diagnosis of success or failure was made in the presence of discordant data.

CONCLUSIONS

Successful ETV/CPC for infantile hydrocephalus was evaluated in relation to fontanel status, head growth, and change in ventricular size. In most patients, a designation of failure or success was made in the setting of discordant data.

Restricted access

Georgina E. Sellyn, Alan R. Tang, Shilin Zhao, Madeleine Sherburn, Rachel Pellegrino, Stephen R. Gannon, Bradley S. Guidry, Travis R. Ladner, John C. Wellons III, and Chevis N. Shannon

OBJECTIVE

The authors’ previously published work validated the Chiari Health Index for Pediatrics (CHIP), a new instrument for measuring health-related quality of life (HRQOL) for pediatric Chiari malformation type I (CM-I) patients. In this study, the authors further evaluated the CHIP to assess HRQOL changes over time and correlate changes in HRQOL to changes in symptomatology and radiological factors in CM-I patients who undergo surgical intervention. Strong HRQOL evaluation instruments are currently lacking for pediatric CM-I patients, creating the need for a standardized HRQOL instrument for this patient population. This study serves as the first analysis of the CHIP instrument’s effectiveness in measuring short-term HRQOL changes in pediatric CM-I patients and can be a useful tool in future CM-I HRQOL studies.

METHODS

The authors evaluated prospectively collected CHIP scores and clinical factors of surgical intervention in patients younger than 18 years. To be included, patients completed a baseline CHIP captured during the preoperative visit, and at least 1 follow-up CHIP administered postoperatively. CHIP has 2 domains (physical and psychosocial) comprising 4 components, the 3 physical components of pain frequency, pain severity, and nonpain symptoms, and a single psychosocial component. Each CHIP category is scored on a scale, with 0 indicating absent and 1 indicating present, with higher scores indicating better HRQOL. Wilcoxon paired tests, Spearman correlations, and linear regression models were used to evaluate and correlate HRQOL, symptomatology, and radiographic factors.

RESULTS

Sixty-three patients made up the analysis cohort (92% Caucasian, 52% female, mean age 11.8 years, average follow-up time 15.4 months). Dural augmentation was performed in 92% of patients. Of the 63 patients, 48 reported preoperative symptoms and 42 had a preoperative syrinx. From baseline, overall CHIP scores significantly improved over time (from 0.71 to 0.78, p < 0.001). Significant improvement in CHIP scores was seen in patients presenting at baseline with neck/back pain (p = 0.015) and headaches (p < 0.001) and in patients with extremity numbness trending at p = 0.064. Patients with syringomyelia were found to have improvement in CHIP scores over time (0.75 to 0.82, p < 0.001), as well as significant improvement in all 4 components. Additionally, improved CHIP scores were found to be significantly associated with age in patients with cervical (p = 0.009) or thoracic (p = 0.011) syrinxes.

CONCLUSIONS

The study data show that the CHIP is an effective instrument for measuring HRQOL over time. Additionally, the CHIP was found to be significantly correlated to changes in symptomatology, a finding indicating that this instrument is a clinically valuable tool for the management of CM-I.

Free access

Silky Chotai, Emily W. Chan, Travis R. Ladner, Andrew T. Hale, Stephen R. Gannon, Chevis N. Shannon, Christopher M. Bonfield, Robert P. Naftel, and John C. Wellons

OBJECTIVE

The aim of this study was to determine the timeline of syrinx regression and to identify factors mitigating syrinx resolution in pediatric patients with Chiari malformation type I (CM-I) undergoing posterior fossa decompression (PFD).

METHODS

The authors conducted a retrospective review of records from pediatric patients (< 18 years old) undergoing PFD for the treatment of CM-I/syringomyelia (SM) between 1998 and 2015. Patient demographic, clinical, radiological, and surgical variables were collected and analyzed. Radiological information was reviewed at 4 time points: 1) pre-PFD, 2) within 6 months post-PFD, 3) within 12 months post-PFD, and 4) at maximum available follow-up. Syrinx regression was defined as ≥ 50% decrease in the maximal anteroposterior syrinx diameter (MSD). The time to syrinx regression was determined using Kaplan-Meier analysis. Multivariate analysis was conducted using a Cox proportional hazards model to determine the association between preoperative, clinical, and surgery-related factors and syrinx regression.

RESULTS

The authors identified 85 patients with CM-I/SM who underwent PFD. Within 3 months post-PFD, the mean MSD regressed from 8.1 ± 3.4 mm (preoperatively) to 5.6 ± 2.9 mm within 3 months post-PFD. Seventy patients (82.4%) achieved ≥ 50% regression in MSD. The median time to ≥ 50% regression in MSD was 8 months (95% CI 4.2–11.8 months). Using a risk-adjusted multivariable Cox proportional hazards model, the patients who underwent tonsil coagulation (n = 20) had a higher likelihood of achieving ≥ 50% syrinx regression in a shorter time (HR 2.86, 95% CI 1.2–6.9; p = 0.02). Thirty-six (75%) of 45 patients had improvement in headache at 2.9 months (IQR 1.5–4.4 months).

CONCLUSIONS

The maximum reduction in syrinx size can be expected within 3 months after PFD for patients with CM-I and a syrinx; however, the syringes continue to regress over time. Tonsil coagulation was associated with early syrinx regression in this cohort. However, the role of surgical maneuvers such as tonsil coagulation and arachnoid veil identification and sectioning in the overall role of CM-I surgery remains unclear.

Restricted access

Ranbir Ahluwalia, Jarrett Foster, Earllondra Brooks, Jaims Lim, Shilin Zhao, Stephen R. Gannon, Bradley Guidry, John Wellons III, and Chevis N. Shannon

OBJECTIVE

The authors aimed to determine whether the Chiari Severity Index (CSI), and other clinical variables, can be used as a predictor of postoperative outcomes for Chiari type I malformation (CM-I) using the modified Chicago Chiari Outcome Scale (mCCOS) as the postoperative measure.

METHODS

The cohort included patients 18 years of age and younger who were treated for CM-I between 2010 and 2015 who had at least 12 months of clinical and radiographic follow-up. CSI grades were assigned using preoperative clinical and neuroimaging data. Clinical, radiographic, and operative data were obtained from medical records. Kruskal-Wallis tests and Spearman correlations were conducted to assess for differences among CSI grades. Linear and ordinal regressions were conducted to evaluate predictors of the mCCOS and its components. Statistical significance was set a priori at p < 0.05.

RESULTS

A total of 65 patients were included in the final cohort. The average age at the time of surgery and the mean mCCOS score were 9.8 ± 4.9 years and 10.4 ± 1.4, respectively. There were no significant differences in the mean mCCOS scores or CSI grades. Pre- and postoperative syrinx sizes were similar across the total patient cohort with median sizes of 7.4 and 3.7 mm, respectively. After controlling for age at the time of surgery, whether duraplasty and/or arachnoid dissection was performed, CSI preoperative score did not predict postoperative mCCOS score. No clinical variable could predict total mCCOS score. When the mCCOS was broken down into 3 subcomponents (pain, non-pain, and complications), only one relationship was identified. Those patients who presented with no headache had a statistically significant decrease in their pain (neck pain, shoulder pain, or dysesthesia in the upper extremities) as measured by the pain component of the mCCOS (χ2 [2, n = 20] = 6.43, p = 0.04). All other preclinical predictors, including CSI grades, were nonsignificant in demonstrating correlations to the mCCOS subcomponents.

CONCLUSIONS

CSI grade was not found to be a marker of surgical outcome as measured by the mCCOS in this study. There were no correlations between the clinical variables and covariates investigated with the mCCOS. The lack of variation in mCCOS scores across this cohort may suggest that the mCCOS is not adequate for detecting differences in postsurgical outcomes. Further investigation is warranted to make this determination.

Restricted access

Andrew T. Hale, Stephen R. Gannon, Shilin Zhao, Michael C. Dewan, Ritwik Bhatia, Michael Bezzerides, Amanda N. Stanton, Robert P. Naftel, Chevis N. Shannon, Sumit Pruthi, and John C. Wellons III

OBJECTIVE

The authors aimed to evaluate clinical, radiological, and surgical factors associated with posterior fossa tumor resection (PFTR)–related outcomes, including postoperative complications related to dural augmentation (CSF leak and wound infection), persistent hydrocephalus ultimately requiring permanent CSF diversion after PFTR, and 90-day readmission rate.

METHODS

Pediatric patients (0–17 years old) undergoing PFTR between 2000 and 2016 at Monroe Carell Jr. Children’s Hospital of Vanderbilt University were retrospectively reviewed. Descriptive statistics included the Wilcoxon signed-rank test to compare means that were nonnormally distributed and the chi-square test for categorical variables. Variables that were nominally associated (p < 0.05) with each outcome by univariate analysis were included as covariates in multivariate linear regression models. Statistical significance was set a priori at p < 0.05.

RESULTS

The cohort consisted of 186 patients with a median age at surgery of 6.62 years (range 3.37–11.78 years), 55% male, 83% Caucasian, and average length of follow-up of 3.87 ± 0.25 years. By multivariate logistic regression, the variables primary dural closure (PDC; odds ratio [OR] 8.33, 95% confidence interval [CI] 1.07–100, p = 0.04), pseudomeningocele (OR 7.43, 95% CI 2.23–23.76, p = 0.0007), and hydrocephalus ultimately requiring permanent CSF diversion within 90 days of PFTR (OR 9.25, 95% CI 2.74–31.2, p = 0.0003) were independently associated with CSF leak. PDC versus graft dural closure (GDC; 35% vs 7%, OR 5.88, 95% CI 2.94–50.0, p = 0.03) and hydrocephalus ultimately requiring permanent CSF diversion (OR 3.30, 95% CI 1.07–10.19, p = 0.0007) were associated with wound infection requiring surgical debridement. By multivariate logistic regression, GDC versus PDC (23% vs 37%, OR 0.13, 95% CI 0.02–0.87, p = 0.04) was associated with persistent hydrocephalus ultimately requiring permanent CSF diversion, whereas pre- or post-PFTR ventricular size, placement of peri- or intraoperative extraventricular drain (EVD), and radiation therapy were not. Furthermore, the addition of perioperative EVD placement and dural closure method to a previously validated predictive model of post-PFTR hydrocephalus improved its performance from area under the receiver operating characteristic curve of 0.69 to 0.74. Lastly, the authors found that autologous (vs synthetic) grafts may be protective against persistent hydrocephalus (p = 0.02), but not CSF leak, pseudomeningocele, or wound infection.

CONCLUSIONS

These results suggest that GDC, independent of potential confounding factors, may be protective against CSF leak, wound infection, and hydrocephalus in patients undergoing PFTR. Additional studies are warranted to further evaluate clinical and surgical factors impacting PFTR-associated complications.

Free access

Michael C. Dewan, Jaims Lim, Stephen R. Gannon, David Heaner, Matthew C. Davis, Brandy Vaughn, Joshua J. Chern, Brandon G. Rocque, Paul Klimo Jr., John C. Wellons III, and Robert P. Naftel

OBJECTIVE

It has been suggested that the treatment of infant hydrocephalus results in different craniometric changes depending upon whether ventriculoperitoneal shunt (VPS) placement or endoscopic third ventriculostomy with choroid plexus cauterization (ETV/CPC) is performed. Without an objective and quantitative description of expected changes to the infant cranium and ventricles following ETV/CPC, asserting successful treatment of hydrocephalus is difficult. By comparing infants successfully treated via ETV/CPC or VPS surgery, the authors of this study aimed to define the expected postoperative cranial and ventricular alterations at the time of clinical follow-up.

METHODS

Patients who underwent successful treatment of hydrocephalus at 4 institutions with either VPS placement or ETV/CPC were matched in a 3:1 ratio on the basis of age and etiology. Commonly used cranial parameters (including head circumference [HC], HC z-score, fontanelle status, and frontooccipital horn ratio [FOHR]) were compared pre- and postoperatively between treatment cohorts. First, baseline preoperative values were compared to ensure cohort equivalence. Next, postoperative metrics, including the relative change in metrics, were compared between treatment groups using multivariate linear regression.

RESULTS

Across 4 institutions, 18 ETV/CPC-treated and 54 VPS-treated infants with hydrocephalus were matched and compared at 6 months postoperatively. The most common etiologies of hydrocephalus were myelomeningocele (61%), followed by congenital communicating hydrocephalus (17%), aqueductal stenosis (11%), and intraventricular hemorrhage (6%). The mean age at the time of CSF diversion was similar between ETV/CPC- and VPS-treated patients (3.4 vs 2.9 months; p = 0.69), as were all preoperative cranial hydrocephalus metrics (p > 0.05). Postoperatively, the ventricle size FOHR decreased significantly more following VPS surgery (−0.15) than following ETV/CPC (−0.02) (p < 0.001), yielding a lower postoperative FOHR in the VPS arm (0.42 vs 0.51; p = 0.01). The HC percentile was greater in the ETV/CPC cohort than in the VPS-treated patients (76th vs 54th percentile; p = 0.046). A significant difference in the postoperative z-score was not observed. With both treatment modalities, a bulging fontanelle reliably normalized at last follow-up.

CONCLUSIONS

Clinical and radiographic parameters following successful treatment of hydrocephalus in infants differed between ETV/CPC and VPS treatment. At 6 months post-ETV/CPC, ventricle size remained unchanged, whereas VPS-treated ventricles decreased to a near-normal FOHR. The HC growth control between the procedures was similar, although the final HC percentile may be lower after VPS. The fontanelle remained a reliable indicator of success for both treatments. This study establishes expected cranial and ventricular parameters following ETV/CPC, which may be used to guide preoperative counseling and postoperative decision making.

Restricted access

Jillian M. Berkman, Jonathan Dallas, Jaims Lim, Ritwik Bhatia, Amber Gaulden, Stephen R. Gannon, Chevis N. Shannon, Adam J. Esbenshade, and John C. Wellons III

OBJECTIVE

Little is understood about the role that health disparities play in the treatment and management of brain tumors in children. The purpose of this study was to determine if health disparities impact the timing of initial and follow-up care of patients, as well as overall survival.

METHODS

The authors conducted a retrospective study of pediatric patients (< 18 years of age) previously diagnosed with, and initially treated for, a primary CNS tumor between 2005 and 2012 at Monroe Carell Jr. Children’s Hospital at Vanderbilt. Primary outcomes included time from symptom presentation to initial neurosurgery consultation and percentage of missed follow-up visits for ancillary or core services (defined as no-show visits). Core services were defined as healthcare interactions directly involved with CNS tumor management, whereas ancillary services were appointments that might be related to overall care of the patient but not directly focused on treatment of the tumor. Statistical analysis included Pearson’s chi-square test, nonparametric univariable tests, and multivariable linear regression. Statistical significance was set a priori at p < 0.05.

RESULTS

The analysis included 198 patients. The median time from symptom onset to initial presentation was 30.0 days. A mean of 7.45% of all core visits were missed. When comparing African American and Caucasian patients, there was no significant difference in age at diagnosis, timing of initial symptoms, or tumor grade. African American patients missed significantly more core visits than Caucasian patients (p = 0.007); this became even more significant when controlling for other factors in the multivariable analysis (p < 0.001). African American patients were more likely to have public insurance, while Caucasian patients were more likely to have private insurance (p = 0.025). When evaluating survival, no health disparities were identified.

CONCLUSIONS

No significant health disparities were identified when evaluating the timing of presentation and survival. A racial disparity was noted when evaluating missed follow-up visits. Future work should focus on identifying reasons for differences and whether social determinants of health affect other aspects of treatment.