Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Stephen J. Johans x
Clear All Modify Search
Restricted access

Stephen J. Johans, Kevin N. Swong, Daniel J. Burkett, Michael P. Wemhoff, Sean M. Lew, Chirag R. Patel and Anand V. Germanwala

Superficial siderosis (SS) of the CNS is a rare and often unrecognized condition. Caused by hemosiderin deposition from chronic, repetitive hemorrhage in the subarachnoid space, it results in parenchymal damage in the subpial layers of the brain and spinal cord. T2-weighted MRI shows the characteristic hypointensity of hemosiderin deposition, classically occurring around the cerebellum, brainstem, and spinal cord. Patients present with progressive gait ataxia and sensorineural hearing impairment. Although there have been several studies, case reports, and review articles over the years, the clear pathophysiology of subarachnoid space hemorrhage remains to be elucidated. The proposed causes include prior intradural surgery, prior trauma, tumors, vascular abnormalities, nerve root avulsion, and dural abnormalities.

Surgical repair of a dural defect associated with SS has been shown to be efficacious at preventing symptomatic progression. There have been several reports of dural defects within the spinal canal treated with surgery. Here, the authors present the first known case of a dural defect of the ventral skull base, namely a clival meningocele, presumed to be causing SS. In this case report, a 10-year-old girl with a history of head trauma at the age of 3 years was found to have a clival meningocele 3 years after her original trauma. On follow-up imaging, the patient was found to have radiographic growth of the meningocele along with evidence of SS of the CNS. The patient was treated conservatively until she began to have progressive hearing loss. It was presumed that the growing meningocele was the source of her SS. An endoscopic endonasal transclival approach with a multilayer dural reconstruction was performed to fix the dural defect and repair the meningocele in hopes of mitigating the progression of her symptoms. At her 12-month postoperative follow-up, she was doing well, with audiometry showing a slightly decreased hearing threshold in the left ear but improved speech discrimination bilaterally. Postoperative MRI showed a stable level of hemosiderin deposition and meningocele repair. Long-term follow-up will be necessary to evaluate for continued clinical stabilization or possible improvement.

Restricted access

Ryan C. Hofler, Daniel M. Heiferman, Ayrin Molefe, Ryan LeDuc, Stephen J. Johans, Jordan D. Rosenblum, Russ P. Nockels and G. Alexander Jones

OBJECTIVE

Atlantoaxial instability is an important cause of pain and neurological dysfunction in patients with Down syndrome (DS), frequently requiring instrumented fusion of the upper cervical spine. This study provides a quantitative analysis of C2 morphology in DS patients compared with their peers without DS to identify differences that must be considered for the safe placement of instrumentation.

METHODS

A retrospective chart review identified age-matched patients with and without DS with a CT scan of the cervical spine. Three-dimensional reconstructions of these scans were made with images along the axis of, and perpendicular to, the pars, lamina, facet, and transverse foramen of C2 bilaterally. Two of the authors performed independent measurements of anatomical structures using these images, and the average of the 2 raters’ measurements was recorded. Pedicle height and width; pars axis length (the distance from the facet to the anterior vertebral body through the pars); pars rostrocaudal angle (angle of the pars axis length to the endplate of C2); pars axial angle (angle of the pars axis length to the median coronal plane); lamina height, length, and width; lamina angle (angle of the lamina length to the median coronal plane); and transverse foramen posterior distance (the distance from the posterior wall of the transverse foramen to the tangent of the posterior vertebral body) were measured bilaterally. Patients with and without DS were compared using a mixed-effects model accounting for patient height.

RESULTS

A total of 18 patients with and 20 patients without DS were included in the analysis. The groups were matched based on age and sex. The median height was 147 cm (IQR 142–160 cm) in the DS group and 165 cm (IQR 161–172 cm) in the non-DS group (p < 0.001). After accounting for variations in height, the mean pars rostrocaudal angle was greater (50.86° vs 45.54°, p = 0.004), the mean transverse foramen posterior distance was less (−1.5 mm vs +1.3 mm, p = 0.001), and the mean lamina width was less (6.2 mm vs 7.7 mm, p = 0.038) in patients with DS.

CONCLUSIONS

Patients with DS had a steeper rostrocaudal trajectory of the pars, a more posteriorly positioned transverse foramen posterior wall, and a narrower lamina compared with age- and sex-matched peers. These variations should be considered during surgical planning, as they may have implications to safe placement of instrumentation.

Restricted access

Ryan C. Hofler, Daniel M. Heiferman, Ayrin Molefe, Ryan LeDuc, Stephen J. Johans, Jordan D. Rosenblum, Russ P. Nockels and G. Alexander Jones

OBJECTIVE

Atlantoaxial instability is an important cause of pain and neurological dysfunction in patients with Down syndrome (DS), frequently requiring instrumented fusion of the upper cervical spine. This study provides a quantitative analysis of C2 morphology in DS patients compared with their peers without DS to identify differences that must be considered for the safe placement of instrumentation.

METHODS

A retrospective chart review identified age-matched patients with and without DS with a CT scan of the cervical spine. Three-dimensional reconstructions of these scans were made with images along the axis of, and perpendicular to, the pars, lamina, facet, and transverse foramen of C2 bilaterally. Two of the authors performed independent measurements of anatomical structures using these images, and the average of the 2 raters’ measurements was recorded. Pedicle height and width; pars axis length (the distance from the facet to the anterior vertebral body through the pars); pars rostrocaudal angle (angle of the pars axis length to the endplate of C2); pars axial angle (angle of the pars axis length to the median coronal plane); lamina height, length, and width; lamina angle (angle of the lamina length to the median coronal plane); and transverse foramen posterior distance (the distance from the posterior wall of the transverse foramen to the tangent of the posterior vertebral body) were measured bilaterally. Patients with and without DS were compared using a mixed-effects model accounting for patient height.

RESULTS

A total of 18 patients with and 20 patients without DS were included in the analysis. The groups were matched based on age and sex. The median height was 147 cm (IQR 142–160 cm) in the DS group and 165 cm (IQR 161–172 cm) in the non-DS group (p < 0.001). After accounting for variations in height, the mean pars rostrocaudal angle was greater (50.86° vs 45.54°, p = 0.004), the mean transverse foramen posterior distance was less (−1.5 mm vs +1.3 mm, p = 0.001), and the mean lamina width was less (6.2 mm vs 7.7 mm, p = 0.038) in patients with DS.

CONCLUSIONS

Patients with DS had a steeper rostrocaudal trajectory of the pars, a more posteriorly positioned transverse foramen posterior wall, and a narrower lamina compared with age- and sex-matched peers. These variations should be considered during surgical planning, as they may have implications to safe placement of instrumentation.